《基于PLC控制的加热炉温度控制系统设计.doc》由会员分享,可在线阅读,更多相关《基于PLC控制的加热炉温度控制系统设计.doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、河北机电职业技术学院毕业设计论文题目 基于PLC控制的加热炉温度控制系统 系 别 电气工程系 专 业 计算机控制技术 班 级 计控0801班 学 生 张海琳 学 号 106 指 导 教 师 都鑫 2011年 6 月摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。加热炉温度控制在许多领域中得到广泛的应用。这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, PLC 在这方面却是公认的最佳选择。加热炉温度是一个大惯性系统,一般采用PID调节进行控制。随着
2、PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。本设计是利用西门子S7-300PLC控制加热炉温度的控制系统。首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-300PLC和系统硬件及软件的具体设计过程。关键词:西门子S7-300PLC,PID,温度传感器,固态继电器AbstractTemperature control system has been widely used in the industry controlled field,as the temperature contro
3、l system of boilers and welding machines in steel works、chemical plant、heat-engine plant etc. Heating-stove temperature control has also been applied widely in all kinds of fields .The application of this aspect is based on SCM which is making the PID control, yet the hardware and software design of
4、 DDC system controlled by SCM is somewhat complicated , its not an advantage especially related to logic control, however it is accepted as the best choice when mentioned to PLC. The furnace temperature of heating-stove is a large inertia system,so generally using PID adjusting to control. With the
5、expanding of PLC function, the control function in many PLC controllers has been expanded. Therefore it is more reasonable to apply PLC controlling in the applicable fields where logical control and PID control blend together. The design has utilized the control system with which Siemens S7-300 PLC
6、control the temperature heating-stove. In the first place this paper presents the working principles of the temperature control system and the elements of this system. Then it introduces Siemens S7-300 PLC and the specific design procedures of the hardware and the software.Key words:Siemens S7-300 P
7、LC,PID,temperature pickup, solid state relay 目 录摘要IAbstractII第一章 引言11.1 系统设计背景11.2 系统工作原理11.3 系统设计目标及技术要求21.4 技术综述2第二章 系统设计32.1 控制原理与数学模型32.1.1 PID控制原理32.1.2 PID指令的使用注意事项62.2 采样信号和控制量分析72.3 系统组成8第三章 硬件设计93.1 PLC的基本概念93.1.1 模块式PLC的基本结构93.1.2 PLC的特点113.2 PLC的工作原理123.2.1 PLC的循环处理过程123.2.2 用户程序的执行过程143.
8、3 S7-300 简介143.3.1 数字量输入模块143.3.2 数字量输出模块153.3.3 数字量输入/输出模块153.3.4 模拟量输入模块153.3.5 模拟量输出模块153.4 温度传感器16 3.4.1 热电偶.16 3.4.2 热电阻.173.5 固态继电器18 3.5.1 概述.18 3.5.2 固态继电器的组成.18 3.5.3 固态继电器的优缺点.19第四章 软件设计204.1 STEP7编程软件简介204.1.1 STEP7概述204.1.2 STEP7的硬件接口.204.1.3 STEP7的编程功能204.1.4 STEP7的硬件组态与诊断功能214.2 STEP7项
9、目的创建224.2.1 使用向导创建项目224.2.2 直接创建项目224.2.3 硬件组态与参数设置224.3 用变量表调试程序244.3.1 系统调试的基本步骤244.3.2 变量表的基本功能254.3.3 变量表的生成264.3.4 变量表的使用264.4 S7-300的编程语言274.4.1 PLC编程语言的国际标准274.4.2 STEP7中的编程技术28结束语32 致谢.33参考文献34附录35第一章 引言1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金机械食品化工等各类工业生产过程中广泛使用的各种加热炉热处理
10、炉反应炉,对工件的处理均需要对温度进行控制。因此,在工业生产和家居生活过程中常需对温度进行检测和监控。由于许多实践现场对温度的影响是多方面的,使得温度的控制比较复杂,传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生的PLC控制技术所取代。而PLC本身优异的性能使基于 PLC控制的温度控制系统变的经济高效稳定且维护方便。这种温度控制系统对改造传统的继电器控制系统有普遍性意义。通过本设计可以熟悉并掌握西门子S7-300P
11、LC的原理与功能以及它的编程语言,以自动控制理论为指导思想,解决工业生产及生活中温度控制的问题。1.2系统工作原理 加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后 PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。既加热炉
12、温度控制得到实现。其中PLC主控系统为加热炉温度控制系统的核心部分起着重要作用。1.3系统设计目标及技术要求本系统应能够控制在设定值的5的误差范围内并且具有温度上下限报警功能和故障报警功能。1.4技术综述自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。 目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。 温度控制系统在国内各行各
13、业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。现在,我国在温度等控制仪表业与国外还有着一定的差距。 温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。另一种是基于单片机进行PID控制,然而
14、单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。随着PLC功能的扩充在许多PLC 控制器中都扩充了PID控制功能。因此本设计选用西门子S7-300PLC来控制加热炉的温度。第二章 系统设计2.1控制原理与数学模型2.1.1 PID控制原理2.1.1.1 PID控制器基本概念PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量来进行控制。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时、控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便
15、。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合采用PID控制技术。(1)比例(P)控制比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系,当仅有比例控制时系统输出存在稳态误差(Steady-state error)。(2)积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差的运算取决于时间的积分,
16、随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大,使稳态误差进一步减小,直到等于零。因此,采用比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。(3)微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大的惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比
17、例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。2.1.1.2 闭环控制系统特点 控制系统一般包括开环控制系统和闭环控制系统。开环控制系统(Open-loop Control System)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响,在这种控制系统中,不依赖将被控制量反送回来以形成任何闭环回路。闭环控制系统(C
18、losed-loop Control System)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback);若极性相同,则称为正反馈。一般闭环控制系统均采用负反馈,又称负反馈控制系统。可见,闭环控制系统性能远优于开环控制系统。PID就是应用最广泛的闭环控制器。如图2-1所示系统是用于电加热炉温度控制系统的闭环控制系统的PID闭环控制系统,系统目标设定值为期望的加热炉温度,闭环控制器的反馈值通过温度传感器测得,并经A/D变换转换为数字量;目标设定值与温
19、度传感器的反馈信号相减,其差送入PID控制器,经比例、积分、微分运算,得到叠加的一个数字量;该数字量经过上限、下限限位处理后进行D/A变换,输出一个电压信号去控制固态继电器,以控制加热炉的温度。该系统的PID控制器一般采用PLC提供的专用模块(本系统采用FB58模块),也可以采用编程的方法(如PLC编程、高级语言编程或组态软件编程等)生成一个数字PID控制器。同时,其它功能如A/D、D/A都由PLC实现,加热炉的反馈信号直接送PLC采集,控制固态继电器的电压信号也由PLC送出,从而控制加热炉的温度。 图2-1电加热炉温度控制系统的闭环控制系统应用实例2.1.1.3 PID控制器的参数整定PID
20、控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性,确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有如下两大类:(1)理论计算整定法。它主要依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接使用,还必须通过工程实际进行调整和修改。(2)工程整定法。它主要依赖于工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。这三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无
21、论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后的调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。2.1.1.4 PID控制器的主要优点 PID控制器成为应用最广泛的控制器,它具有以下优点:(1)PID算法蕴涵了动态控制过程中过去、现在、将来的主要信息,而且其配置几乎最优。其中,比例(P)代表了当前的信息,起纠正偏差的作用,使过程反应迅速
22、。微分(D)在信号变化时有超前控制作用,代表将来的信息。在过程开始时强迫过程进行,过程结束时减小超调,克服振荡,提高系统的稳定性,加快系统的过渡过程。积分(I)代表了过去积累的信息,它能消除静差,改善系统的静态特性。此三种作用配合得当,可使动态过程快速、平稳、准确,收到良好的效果。(2)PID控制适应性好,有较强的鲁棒性,对各种工业应用场合,都可在不同的程度上应用。特别适于“一阶惯性环节+纯滞后”和“二阶惯性环节+纯滞后”的过程控制对象。(3)PID算法简单明了,各个控制参数相对较为独立,参数的选定较为简单,形成了完整的设计和参数调整方法,很容易为工程技术人员所掌握。 (4)PID控制根据不同
23、的要求,针对自身的缺陷进行了不少改进,形成了一系列改进的PID算法。例如,为了克服微分带来的高频干扰的滤波PID控制,为克服大偏差时出现饱和超调的PID积分分离控制,为补偿控制对象非线性因素的可变增益PID控制,等。这些改进算法在一些应用场合取得了很好的效果。同时当今智能控制理论的发展,又形成了许多智能PID控制方法。2.1.2 PID指令的使用注意事项2.1.2.1 PID控制器的选取PID控制器的性能和处理速度只与所采用的CPU的性能有关。对于任意给定的CPU,控制器的数量和每个控制器被调用的频率是相互矛盾的。控制环执行的速度,也即在每个时间单元内操作值必须被更新的频率决定了可以安装的控制
24、器的数量。对要控制的过程类型没有限制,迟延系统(温度、液位等)和快速系统(流量、电机转速等)都可以作为被控对象。过程分析时应注意:控制过程的静态性能(比例)和动态性能(时间延迟、死区和重设时间等)对被控过程控制器的构造和设计以及静态(比例)和动态参量(积分和微分)的维数选取有着很大的影响。准确地了解控制过程的类型和特性数据是非常必要的。控制器选取时应注意:控制环的特性由被控过程或被控机械的物理特性决定,并且设计中可以改变的程度不是很大。只有选用了最适合被控对象的控制器并使其适应过程的响应时间,才能得到较高的控制质量。不用通过编程就可以生成控制器的大部分功能(构造、参数设置和在程序中的调用等),
25、前提是必须已经掌握STEP 7的编程基础知识。2.1.2.2 PID参数的设定 PID调节器参数是根据控制对象的惯量来确定的。大惯量如大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如一个小电机带一个水泵进行压力闭环控制,一般只用PI控制,P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正,主要是靠经验及对生产工艺的熟悉,参考对测量值的跟踪与设定值的曲线,从而调整P、I、D的大小。下面具体说明经验法的整定步骤:(1)让调节器参数的积分系数I=0,微分系数D=0,控制系统投入闭环运行,由小到大改变比例系数P,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控
26、制过程为止。(2)取比例系数P为当前的值乘以0.83,由小到大增加积分系数I,同样让扰动信号作阶跃变化,直至得到满意的控制过程。(3)积分系数I保持不变,改变比例系数P,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数P增大一些,再调整积分系数I,力求改善控制过程。如此反复试凑,直到找到满意的比例系数P和积分系数I为止。(4)引入适当的微分系数D,此时可适当增大比例系数P和积分系数I。和前述步骤相同,微分系数的整定也需反复调整,直到控制过程满意为止。需要注意的是:仿真系统所采用的PID调节器与传统的工业PID调节器有所不同,其各个参数之间是相互隔离的,因而互不影响,用
27、其观察调节规律十分方便。经验法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。经验法简单可靠,但需要有一定的现场运行经验,整定时易带有主观片面性。当采用PID调节器时,由于有多个整定参数,反复试凑的次数增多,因此增加了得到最佳整定参数的难度。2.2采样信号和控制量分析本系统共有一个模拟量(温度)信号,从模拟量地址的288读入PLC。三个数字量控制固态继电器。其余变量如表2-2所示。表2-2 变量表序号采样信号名称性质(开关、模拟)传感器占用硬件资源说明1AI0模拟量热电偶I288从外界读入的温度信号2DI0开关量I0.0启动信号3DI1开关量I0.1停
28、止信号4DI2开关量I0.2温度继电器高温信号5DI3开关量I0.3温度继电器低温信号6DI5开关量I1.3缺相报警输入7DI6开关量I1.4过载保护信号8DO0开关量Q0.0A相固态继电器控制信号9DO1开关量Q0.1B相固态继电器控制信号10DO2开关量Q0.2C相固态继电器控制信号11DO3开关量Q1.1缺相报警12DO4开关量Q1.2高温指示灯13DO5开关量Q1.3低温指示灯14DO6开关量Q1.5KA线圈2.3系统组成本系统的结构框图如图2-3所示。图2-3系统结构框图由图2-3可知,温度传感器采集到数据后送给S7-300PLC,S7-300PLC通过运算后给固态继电器一个控制信号
29、从而控制加热炉的导通与否。上位机是编写PLC程序以及监控温度的变化。第三章 硬件设计 随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛地应用在所有的工业领域。现代社会要求制造业对市场需求作出迅速反应,生产出小批量、多品种、多规格、高质量的产品。为了满足这一要求,生产设备和自动化生产线的控制系统必须具有极高的可靠性和灵活性。可编程序控制器(Programmable Logic Controller)正是顺应这一要求出现的,它是以微处理器为基础的通用控制装置。本章主要介绍西门子S7-300系列PLC以及其它硬件的组成与选型。3.1 PLC的基本概念可编程序控制器简称为PLC,它的应
30、用面广、功能强大、使用方便,已经成为当代工业自动化的主要支柱之一。PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,PLC在其它领域,例如在民用和家庭自动化设备中的应用也得到了迅速的发展。3.1.1模块式PLC的基本结构这里我们主要介绍的是西门子S7-300,S7-300属于模块式PLC。西门子的PLC以其极高的性价比,在国内占有很大的市场份额,在我国的各行各业得到了广泛的应用。S7-300模块式PLC,主要由机架、CPU模块、信号模块、功能模块、接口模块、通信处理器、电源模块和编程设备组成,各种模块安装的机架上。通过CPU模块或通信模块上的通信接口,PLC被连接到通信网络上,可以
31、与计算机、其它PLC或其它设备通信。图3-1是PLC控制系统的示意图。图3-1 PLC控制系统示意图CPU模块:CPU模块主要由微处理器和存储器组成,S7-300将CPU模块简称为CPU。在PLC控制系统中,CPU模块相当于人的大脑和心脏,它不断的采集输入信号,执行用户程序,刷新系统的输出,模块中的存储器用来存储程序和数据。信号模块:输入(Input)模块和输出(Output)模块一般简称为I/O模块,开关量输入/输出模块简称为DI模块和DO模块,模拟量输入/输出模块简称为AI模块和AO模块,在S7-300中统称为信号模块。信号模块是系统的眼、耳、手、脚,是联系外部现场设备和CPU模块的桥梁。
32、输入模块用来接收和采集输入信号,开关量输入模块用来接收从按钮、选择开关、数字拨码开关、限位开关、接近开关等来的开关量输入信号;模拟量输入模块用来接收电位器、测速发电机和各种变送器提供的连续变化的模拟量电流电压信号。开关量输出模块用来控制接触器、电磁阀、电磁铁、指示灯、数字显示装置和报警装置等输出设备,模拟量输出模块用来控制电动调节阀、变频器等执行器。在信号模块中,用光耦合器、光敏晶闸管、小型继电器等器件来隔离PLC的内部电路和外部的输入、输出电路。功能模块:为了增强PLC的功能,扩大应用领域,减轻CPU的负担,PLC厂家开发了各种各样的功能模块。主要用于完成某些对实时性和存储容量要求很高的控制
33、任务。接口模块:CPU模块所在的机架称为中央机架,如果一个机架不能容纳全部模块,可以增设一个或多个扩展机架。接口模块用来实现中央机架和扩展机架之间的通信,有的接口模块还可以为扩展机架供电。通信处理器:通信处理器用于PLC之间、PLC与远程I/O之间、PLC与计算机和其他智能设备之间的通信,可以将PLC接入MPI、PROFIBUS-DP、AS-i和工业以太网,或者用于点对点通信。电源模块:PLC一般使用AC 220V电源或DC 24V电源,电源模块用于将输入电压转换为DC 24V和背板总线上的DC 5V电压,供其他模块使用。编程设备:S7-300使用安装了编程软件STEP7的个人计算机作为编程设
34、备,在计算机屏幕上直接生成和编辑各种文本程序或图形程序,可以实现不同编程语言之间的相互转换。程序被编译后下载到PLC,也可以将PLC中的程序上传到计算机。程序可以存盘或打印,通过网络,可以实现远程编程。编程软件还具有对网络和硬件组态、参数设置、监控和故障诊断等功能。3.1.2 PLC的特点编程方法简单易学:梯形图是使用的最多的PLC编程语言,其电路符号和表达方式与继电器电路原理图相似,梯形图语言形象直观,易学易用,熟悉继电器电路图的电气技术人员只需花几天时间就可以熟悉梯形图语言,并用来编制用户程序。功能强,性能价格比高:一台小型的PLC内有成百上千个可供用户使用的编程元件,可以实现非常复杂的控
35、制功能。与相同功能的继电器系统相比,具有很高的性能价格比。PLC可以通过通信联网,实现分散控制,集中管理。硬件配套齐全,用户使用方便,适应性强:PLC产品已经标准化、系列化、模块化,配备有品种齐全的硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。PLC的安装接线也很方便,一般用接线端子连接外部接线。硬件配置确定后,通过修改用户程序,就可以方便快速地适应工艺条件的变化。可靠性高,抗干扰能力强:PLC用软件取代了继电器控制系统中大量的中间继电器和时间继电器,接线可减少到继电器控制系统的十分之一以下,大大减少了因触点接触不良造成的故障。S7-300有极强的故障诊断能力
36、。PLC使用了一系列硬件和软件抗干扰措施,具有很强的抗干扰能力,可以直接用于有强烈干扰的工业生产现场,PLC已被公认为最可靠的工业控制设备之一。系统的设计、安装、调试工作量少:PLC用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,使控制柜的设计、安装、接线工作量大大减少。PLC的梯形图程序可以用顺序控制设计法来设计。这种设计方法很有规律,容易掌握。可以在实验室模拟调试PLC的用户程序,用小开关来模拟输入信号,通过个输出点对应的发光二极管的状态来观察输出信号的状态,调试的时间比继电器系统少的多。维修工作量小,维修方便:PLC的故障率很低,并且有完善的故障诊断功能。PL
37、C或外部的输入装置和执行机构发生故障时,根据PLC上的发光二极管或编程软件提供的信息,可以很方便地查明故障的原因,用更换模块的方法可以迅速地排除故障。体积小,能耗低:对于复杂的控制系统,使用PLC后,由于减少了大量的中间继电器和时间继电器,开关柜的体积比继电器控制系统小的多。3.2 PLC的工作原理3.2.1 PLC的循环处理过程CPU中的程序分为操作系统和用户程序。操作系统用来处理PLC的起动、刷新输入/输出过程映像区、调用用户程序、处理中断和错误、管理存储区和通信等任务。用户程序由用户生成,用来实现用户要求的自动化任务。STEP7将用户程序和程序所需的数据放置在块中,功能块FB和功能FC相
38、当于用户编写的子程序,系统功能SFC和系统功能块SFB是操作系统提供给用户使用的标准子程序,这些块统称为逻辑块。PLC采用循环执行用户程序的方式,这种运行方式也称为扫描工作方式。OB1是用于循环处理的组织块,相当于用户程序中的主程序,它可以调用别的逻辑块,或被中断程序(组织块)中断。PLC得电或由STOP模式切换到RUN模式时,CPU执行启动操作,清除没有保持功能的位存储器、定时器和计数器,清除中断堆栈和块堆栈的内容,复位保存的硬件中断等。此外还要执行一次用户编写的“系统启动组织块”OB100,完成用户指定的初始化操作。以后进入周期性的循环运行。图3-2是扫描过程。结合图简要介绍下扫描过程:(
39、1)操作系统启动循环时间监控;(2)CPU将输出过程映像区的数据写到输出模块;(3)CPU读输入模块的输入状态,并存入输入过程映像区;(4)CPU处理用户程序,执行用户程序中的指令;(5)在循环结束时,操作系统执行所有挂起的任务;(6)CPU返回第一阶段,重新启动循环时间监控。 图3-2扫描过程在启动完成后,不断地循环调用OB1,在OB1中可以调用其他逻辑块(FB、SFB、FC、SFC)。循环程序处理过程可以被某些事件中断。如果有中断事件出现,当前正在执行的块被暂停执行,并调用分配给该事件的组织块。该组织块被执行完后,被暂停执行的块将从被中断的地方开始继续执行。在PLC的存储器中,设置了一片区
40、域用来存放输入信号和输出信号的状态,它们分别称为输入过程映像区和输出过程映像区。PLC梯形图中的其他编程元件也有对应的映像存储区。在循环程序处理过程中,CPU并不直接访问I/O模块中的输入地址区和输出地址区,而是访问CPU内部的过程映像区。在写输出模块阶段,CPU将输出过程映像区的状态传送到输出模块。梯形图中某一输出位的线圈“通电”时,对应的输出过程映像位为1状态。信号经输出模块隔离和功率放大后,继电器型输出模块中对应的硬件继电器的线圈通电,其常开触点闭合,使外部负载通电工作。若梯形图中的线圈“断电”,对应的输出过程映像位为0状态,在写输出模块阶段之后,继电器型输出模块中对应的硬件继电器的线圈
41、断电,其常开触点断开,外部负载断电,停止工作。在读输入模块阶段,PLC把所有外部输入电路的接通/断开状态读入输入过程映像区。外部输入电路接通时,对应的输入过程映像位为1状态,梯形图中对应的输入位的常开触点接通,常闭触点断开。外部输入触点电路断开时,对应的输入过程映像位为0状态,梯形图中对应的输入位的常开触点断开,常闭触点通。在程序执行阶段,即使外部输入信号的状态发生了改变,输入过程映像位的状态也不会随之而变,输入信号变化了的状态只能在下一个循环扫描周期的读输入模块阶段被读入。3.2.2用户程序的执行过程PLC的用户程序由若干条指令组成,指令在存储器中顺序排列。在没有跳转指令和块调用指令时,CP
42、U从第一条指令开始,逐条顺序地执行用户程序,直到用户程序结束之处。在执行指令时,从输入过程映像区或别的存储区中将有关编程元件的0、1状态读出来,并根据指令的要求执行相应的逻辑运算,运算的结果写入到对应的存储区中,因此,各编程元件的存储区(输入过程映像区除外)的内容随着程序的执行而变化。循环时间是指操作系统执行一次如图3.3所示的循环操作所需的时间,包括执行OB1中的程序段和中断该循环的系统操作的时间,也称扫描循环时间或扫描周期。循环时间与用户程序的长短、指令的种类和CPU执行指令的速度有很大的关系。3.3 S7-300简介 S7-300是模块化的中小型PLC,适用于中等性能的控制要求。品种繁多
43、的CPU模块、信号模块和功能模块能满足各种领域的自动控制任务,用户可以根据系统的具体情况选择合适的模块,维修时更换模块也很方便。S7-300有很高的电磁兼容性和抗振动抗冲击能力,有350多条指令,其编程软件STEP7功能强大,可以使用多种编程语言。S7-300采用紧凑的、无槽位限制的模块结构,各个模块都安装在导轨上,用螺栓锁紧即可。3.3.1数字量输入模块数字量输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开关等。数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。输入电路中一般设有RC滤波电路,以防止由于输入触点抖动或外部干扰脉冲引起的错误输
44、入信号,输入电流一般为数毫安。3.3.2 数字量输出模块SM 322数字量输出模块将S7-300的内部电平信号转化为控制过程所需的外部信号电平,同时具有隔离和功率放大的作用。输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交流负载的双向晶闸管或固态继电器,以及既可以驱动交流负载又可以驱动直流负载的小型继电器。输出电流典型值为0.52A,负载电源由外部现场提供。3.3.3数字量输入/输出模块SM323是S7-300的数字量输入/输出模块,它由两种型号可供选择。一种是8点的输入和8点输出的模块,输入点和输出点均只有一个公共端。另外一种有16点输入(8点一组)和16点输出(8点
45、一组)。输入、输出的额定电压均为DC24V,输入电流为7mA,最大输出电流为0.5A,每组总输出电流为4A。输入电路和输出电路通过光耦合器与背板总线相连,输出电路为晶体管型,有电子保护功能。3.3.4模拟量输入模块模拟量变送器:生产过程中有大量的连续变化的模拟量需要用PLC来测量或控制。有的是非电量,例如温度、压力、流量、液位、物体的成分(例如气体中的含氧量)和频率等。有的是强电电量,例如发电机组的电流、电压、有功功率和无功功率、功率因素等。变送器用于将传感器提供的电量或非电量转换为标准的直流电流或直流电压信号,例如DC010V和420mA。SM331模拟量输入模块的基本结构:模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,其主要组成部分是A/D(Analog/Digit)转换器。SM331也可以直接连接不带附加放大器的温度传感器(热电偶或热电阻),这样可以省去温度变送器,不但节约了硬件成本,控制系统的结构也更加紧凑。3.3.5模拟量输出模块模拟量输出模块的基本结构:S7-300的模拟量输出模块SM332用于将CPU送给的数字信号转换为成比例的电