《英汉双语材料力学11教学教材.ppt》由会员分享,可在线阅读,更多相关《英汉双语材料力学11教学教材.ppt(66页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、英汉双语材料力学11CHAPTER 11 ENERGY METHODCHAPTER 11 ENERGY METHOD 111 GENERAL EXPRESSIONS OF THE STRAIN ENERGY112 MOHRS THEOREM(METHOD OF UNIT FORCE)113 CATIGLIANOS THEOREM2第十一章第十一章第十一章第十一章 能量方法能量方法能量方法能量方法 111 变形能的普遍表达式变形能的普遍表达式112 莫尔定理莫尔定理(单位力法单位力法)113 卡氏定理卡氏定理3111 GENERAL EXPRESSIONS OF THE STRAIN ENERG
2、Y1、Principle of energy:2、Calculation of the strain energy of rods:1).1).Calculation of the strain energy of rods in tension or compression:Strain energy stored in the elastic body is equal to the work done by external forces,that is:Method to analyze and calculate displacements、deformations and inte
3、rnal forces of deformable bodies by this kind of relation is called energy method.orDensity of the strain energy:4111 变形能的普遍表达式变形能的普遍表达式一、能量原理:一、能量原理:二、杆件变形能的计算:二、杆件变形能的计算:1.1.轴向拉压杆的变形能计算:轴向拉压杆的变形能计算:弹性体内部所贮存的变形能,在数值上等于外力所作的功,即 利用这种功能关系分析计算可变形固体的位移、变形和内力的方法称为能量方法。52.2.Calculation of the strain energ
4、y of rods in torsion:3.3.Calculation of strain energy of rods in bending:or Density of the strain energy:orDensity of the strain energy:62.2.扭转杆的变形能计算:扭转杆的变形能计算:3.3.弯曲杆的变形能计算:弯曲杆的变形能计算:73、General expressions of the strain energy:Strain energy is independent of the order of loading.Deformations due t
5、o mutually independent load may be summed up each other.For slender columns,the strain energy due to shearing forces may be neglected.Deflection factor of shear8三、变形能的普遍表达式:三、变形能的普遍表达式:变形能与加载次序无关;相互独立的力(矢)引起的变形能可以相互叠加。细长杆,剪力引起的变形能可忽略不计。9Solution:In energy method(work done by external forces is equal
6、 to the strain energy)Determine internal forcesDetermine internal forcesABending moment:Torque:Example 1 A semicircle rod as shown in the figure is lie in horizontal plane.A vertical force P act at its point A.Determine the displacement of point A in vertical direction.PROQMNMTAAPNBj jTO10MN 例例1 1 图
7、示半圆形等截面曲杆位于水平面内,在A点受铅垂力P的作用,求A点的垂直位移。解:用能量法(外力功等于应变能)求内力APROQMTAAPNBj jTO11Work done by external forces is equal to the strain energyWork done by external forces is equal to the strain energyStrain energyStrain energy:Letthen12外力功等于应变能变形能:13Example Example 2 Determine the deflection of point C by th
8、e energy method,where the beam is of equal section and straight.Solution:Work done by external Work done by external forces is equal to the strain energyforces is equal to the strain energyBy using symmetry we get:Thinking:For the distributed load,can we determine the displacement of point C by this
9、 method?qCaaAPBfLet14 例例2 用能量法求C点的挠度。梁为等截面直梁。解:外力功等于应变能应用对称性,得:思考:分布荷载时,可否用此法求C点位移?qCaaAPBf15112 MOHRS THEOREM(METHOD OF UNIT FORCE)Determine the displacement f A of an arbitrary point A.1、Provement of the theorem:aAFigfAq(x)Figc A0P=1q(x)fAFigb A=1P016112 莫尔定理莫尔定理(单位力法单位力法)求任意点A的位移f A。一、定理的证明:一、定理的
10、证明:aA图fAq(x)图c A0P=1q(x)fA图b A=1P017 Mohrs theorem(method of unit force)2、General form of Mohrs theorem18 莫尔定理莫尔定理(单位力法单位力法)二、普遍形式的莫尔定理二、普遍形式的莫尔定理193、What we must pay attention to as we apply Mohrs theorem:Coordinate of Coordinate of M0(x)must be coincide with that of M(x).For each segment the coord
11、inate may be set up freely.Mohrs integrationmust be through the whole structure.Mohrs integrationmust be through the whole structure.M0:The internal force of the structure as we act a generalized unit force along the direction,of the generalized displacement that is to be determined,where the applie
12、d force is taken out.M(x):The internal force of the structure acted by original loads.The product of the applied generalized unit force and the generalized The product of the applied generalized unit force and the generalized displacement to be determined determined must be of the dimension of workd
13、isplacement to be determined determined must be of the dimension of work.20三、使用莫尔定理的注意事项:三、使用莫尔定理的注意事项:M0(x)与M(x)的坐标系必须一致,每段杆的坐标系可 自由建立。莫尔积分必须遍及整个结构。M0去掉主动力,在所求 广义位移广义位移广义位移广义位移 点,沿所求 广义位移广义位移广义位移广义位移 的方向加广义单位力广义单位力广义单位力广义单位力 时,结构产生的内力。M(x):结构在原载荷下的内力。所加广义单位力与所求广义位移之积,必须为功的量纲。21Example 3 3 Determine
14、 the displacement and the angle of rotation of point C by the energy method.Solution:Plot the diagram of the structure acted by the unit loadPlot the diagram of the structure acted by the unit load Determine the internal forceBAaaCqBAaaC0P=1x22 例例3 3 用能量法求C点的挠度和转角。梁为等截面直梁。解:画单位载荷图求内力BAaaCqBAaaC0P=1x
15、23SymmetrySymmetryDeformationBAaaC0P=1BAaaCqx()24变形BAaaC0P=1BAaaCqx()25Determine the angle of rotation.Set up the coordinate again(as shown in the figureDetermine the angle of rotation.Set up the coordinate again(as shown in the figure)qBAaaCx2x1BAaaCMC0=1 d)()()()()(00)(00+=aBCaABxEIxMxMdxEIxMxM=02
16、6求转角,重建坐标系(如图)qBAaaCx2x1BAaaCMC0=1 d)()()()()(00)(00+=aBCaABxEIxMxMdxEIxMxM=027Solution:Plot the diagram of Plot the diagram of the structure acted by a unit load the structure acted by a unit load Determine the internal force510 20A300P=60NBx500Cx1510 20A300Bx500C=1P0Example 4 Example 4 A folding r
17、od is shown in the figure.A bearing is at position A and the rod may rotate freely in the bearing but can not move up and down.Knowing:E=210Gpa,G=0.4E,Determine the vertical displacement of point B.28 例例4 4 拐杆如图,A处为一轴承,允许杆在轴承内自由转动,但不能上下移动,已知:E=210Gpa,G=0.4E,求B点的垂直位移。解:画单位载荷图求内力510 20A300P=60NBx500Cx
18、1510 20A300Bx500C=1P029Determine the deformationDetermine the deformation()30变形()31113 CATIGLIANOS THEOREMGive Pn an increment dPn,then:1)First apply forces P1、P2、Pn on the body,then:2).First apply the force dPn on the body,then:1、Provement of the theorem d dn32113 卡氏定理卡氏定理给Pn 以增量 dPn,则:1.先给物体加P1、P2
19、、Pn 个力,则:2.先给物体加力 dPn,则:一、定理证明一、定理证明 d dn33Again apply forces P1、P2、Pn,then:d dnn=nPU d dSecond Castiglianos theorem Italian engineer Alberto Castigliano,18471884 34再给物体加P1、P2、Pn 个力,则:d dnn=nPU d d第二卡氏定理第二卡氏定理 意大利工程师阿尔伯托卡斯提安诺(Alberto Castigliano,18471884)352、what we must pay attention to as we apply
20、 Catiglianos theorem:ULinear elastic strain energy of the whole structure acted by external loads Pn is considered as a variable.The reactions and the strain energy of the structure and so on must be all expressed as the function of Pn.n n is the deformation of the point acted by Pn and it isalong t
21、he direction of Pn.If there is noIf there is no Pn corresponding to n n we may first act a Pn along n n and determine the partial derivative and then let Pn be zero.d dn36二、使用卡氏定理的注意事项:二、使用卡氏定理的注意事项:U整体结构在外载作用下的线 弹性变形能 Pn 视为变量,结构反力和变形能 等都必须表示为 Pn的函数 n n为 Pn 作用点的沿 Pn 方向的变形。当无与 n n对应的 Pn 时,先加一沿 n n 方向
22、的 Pn,求偏导后,再令其为零。d dn373、Castiglianos theorem for special structures(rods):38三、特殊结构(杆)的卡氏定理:三、特殊结构(杆)的卡氏定理:39Example 5 Example 5 The structure is shown in the figure.Determine the deflection and the angle of rotation of the section A by Catiglianos theorem.Determine the deformationDetermine the inter
23、nal forceSolution:Determine the deflection.Set up the coordinateDetermine the partial derivativeDetermine the partial derivative of the internal force with respect to of the internal force with respect to PAALPEIxO()40 例例5 5 结构如图,用卡氏定理求A 面的挠度和转角。变形求内力解:求挠度,建坐标系将内力对PA求偏导ALPEIxO()41Determine the angle
24、 A of rotationDetermine the internal forceDetermine the internal forceThere is no the generalized force corresponding to A.we may act one.“Negative sign”expresses that A is contrary to the direction of the acted generalized force MA()Determine the partial derivative of the internalDetermine the part
25、ial derivative of the internal force force MM(x x)with respect to)with respect to MA and let M A=0.Determine the deformation(Note:M A=0)LxO APMA42求转角 A求内力没有与A向相对应的力(广义力),加之。“负号”说明 A与所加广义力MA反向。()将内力对MA求偏导后,令M A=0求变形(注意:M A=0)LxO APMA43Example 6 Determine the deflection curve of the beam shown in the
26、figure by Castiglianos theorem.Solution:Determine the deflection curvethe deflection of an arbitrary point on the beam f(x).Determine the internal forcesDetermine the partial derivative of the internalDetermine the partial derivative of the internal force force MM(x x)with respect to)with respect to
27、 Px and let Px=0.There is no the generalized force corresponding to f(x).we may act one.PALxBPx CfxOx144 例例6 结构如图,用卡氏定理求梁的挠曲线。解:求挠曲线任意点的挠度 f(x)求内力将内力对Px 求偏导后,令Px=0没有与f(x)相对应的力,加之。PALxBPx CfxOx145Determine the deformationDetermine the deformation(Note:Px=0)46变形(注意:Px=0)47Example 7 A beam with equal s
28、ection is shown in the figure.Determine the deflection f(x)of point B by Catiglianos theorem.determine internal forcesSolution:1.Determine redundant reactions according toDetermine the partial derivative of Determine the partial derivative of the internal force with respect to the internal force wit
29、h respect to RC.Take a primary beam as shown in theTake a primary beam as shown in thePCAL0.5 LBfxOPCAL0.5 LBRCfigure.figure.48 例例7 等截面梁如图,用卡氏定理求B 点的挠度。求内力解:1.依 求多余反力,将内力对RC求偏导取静定基如图PCAL0.5 LBfxOPCAL0.5 LBRC49DeformationSo50变形512.DetermineDetermine the partial derivative of the internal force with r
30、espectDetermine the partial derivative of the internal force with respectDetermine the internal forcesDetermine the internal forcesto to P.522.求将内力对P求偏导求内力53Deformation()54变形()55Determine the deformationDetermine the deformationSolution:Plot the diagram of the structure acted by unit loadDetermine t
31、he internal forceDetermine the internal forceExample 8 A frame is shown in the figure.Determine the distance between section A and section B after the deformation.PPAB1156变形解:画单位载荷图求内力 例例8 结构如图,求A、B两面的拉开距离。PPAB1157 Chapter 11 Exercises1.A straight rod with the tension(compression)rigidity EI is subj
32、ected forces shown in the figure.May the strain energy be expressed as 2.Try to explain how to determine the deflection of the free end of the beam shown in the figure by Castiglianos theorem.3.As shown in the figure,a rigid frame is subjected to forces.Knowing EI is a constant.Try to determine the
33、relative displacement between point A and point B by Mohrs theorem(neglecting the tensile deformation of Section CD).58 第十一章第十一章 练习题练习题 一、抗拉(压)刚度为一、抗拉(压)刚度为EIEI的等直杆,受力如图,的等直杆,受力如图,其变形能是否为:其变形能是否为:二、试述如何用卡氏定理求图示梁自由端的挠度。二、试述如何用卡氏定理求图示梁自由端的挠度。三、刚架受力如图,已知三、刚架受力如图,已知EIEI为常数,试用莫尔为常数,试用莫尔定理求定理求A A、B B两点间的相
34、对位移(忽略两点间的相对位移(忽略CDCD段的拉伸变段的拉伸变形)。形)。59 Solution:60解:解:61 4.A beam with the bending rigidity EI is shown in the figure.The rigidity of the spring at the end B is k.Try to determine the deflection of the point where the force P is applied by Castiglianos theorem.Solution:The strain energy of the system is The deflection of Section C is 62 四、抗弯刚度为四、抗弯刚度为EIEI的梁如图,的梁如图,B B端弹簧刚度为端弹簧刚度为k k,试用卡氏定理求力试用卡氏定理求力P P作用点的挠度。作用点的挠度。解:解:系统的变形能系统的变形能 C C截面的挠度截面的挠度636465此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢