《科技赋能信贷案例报告.docx》由会员分享,可在线阅读,更多相关《科技赋能信贷案例报告.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、ontents目录一、 科技赋能信贷2(一) 技术赋能2(二)赋能场景4二、科技赋能信贷典型案例6(一) “亿亩田”-基于卫星遥感和人工智能技术的智能化农村金融服务. 6(二) 基于区块链的长三角征信链应用平台 8(三) 基于多方平安计算的小微企业智慧金融服务 8(四)联邦学习/多方学习信贷服务方案10(五)信贷全流程解决方案11存证。可以减少纸质材料传递和纸质材料损毁造成的取证困难等问题。预计在方案实施后,可以在四川区域服务用户4000户,累计交易额达25亿元。(四)联邦学习/多方学习信贷服务方案对于金融机构,涉农贷款由于局部农户或农产机构存在征信白户、金融数据过少等问 题,运用传统的征信方
2、式,无法有效评估这局部用户的信用情况,进而导致针对农户 或农产机构存在审批难、放款难等痛点。重庆农商银行与腾讯云就针对上述痛点,合作开发出基于多方学习的涉农信贷服务方 案,为重庆“三农”用户提升信贷获取效率,提供更加精准的信贷投放。工程的推 出,能帮助“三农”用户解决融资难和融资贵的问题,并能有效强化银行风险识别 能力,提高贷后管理精细度。该方案运用多方学习技术交换机器学习参数,通过数据的高纬度抽象特征交互,从而 解决银行涉农数据质量差、来源少等问题。另外,基于大数据技术,重庆农商银行将 银行交易数据,拓宽到与重庆市供销社、工商、税务、司法等外部数据相结合,加上 腾讯云企业互联网舆情、企业网络
3、经营行为等数据,完善银行KYC体系,增强银行风 控建模能力。在创新应用层面,该涉农贷款解决方案丰富了涉农数据来源,强化了数据隐私平安, 提升了风控模型效果,以及“三农”用户的精准营销。预计方案上线后,能够服务重 庆农商银行的“三农”用户1万户。数据孤岛是信贷机构参与者普遍面临的痛点之一,由于涉及到用户隐私、行业竞争等 问题,无法直接进行数据交换。联邦学习技术的出现,就解决了这个痛点。针对数据孤岛问题,天冕大数据运用联邦学习技术,让参与方在不共享数据的基础上 联合建模,能从技术上打破数据孤岛,实现AI协作。多个机构由于行业竞争、隐私平安、行政手续复杂等问题,无法直接进行数据整合。 联邦学习技术的
4、出现,有效帮助多个机构在满足用户隐私保护、数据平安和政府法规 的要求下,进行数据使用和机器学习建模。X样本方服务方Y样本方a协询参与建模过程中间结景交互不断迭代更新图4:天冕大数据联邦学习平台资料来源:天冕大数据在天冕大数据的联邦学习平台上,就运用了联邦学习技术。各参与方只需要在本地服 务器上传数据样本,没有数据流出,仅交互中间梯度计算结果,无样本数据交互。通 过智能WeFe,机构参与者可以在本地配置算法与建模参数,本地训练模型,最终可在 交互中间梯度迭代模型。(五)信贷全流程解决方案传统金融信贷机构都面临着诸多业务痛点,特别是在风控和营销获客上,对于信贷全 流程解决方案需求迫切。金融科技改变
5、了信贷业务的多种开展形态,特别是大数据和人工智能技术,加速了行 业整体智能化和数字化程度。天冕大数据实验室,是金融科技集团WeLab旗下的一站 式金融科技服务商,能够为金融机构和企业用户提供多种数字化和智能化解决方案。 其中,以大数据分析、人工智能、机器学习为核心技术基础,天冕大数据自主研发的 “信贷解决方案”,能够为用户提供定制化的产品,面向银行、消费金融、小微企业等领域,方案包含产品设计、信贷决策、客户管理。作为一家金融科技公司,天冕大数据的核心优势是研发技术。目前,天冕的研发人员 占全部员工的比例为30%,研发团队来自平安、阿里、腾讯等头部互联网或科技公司。2019年末,天冕的研发费用率
6、在7-8%,重点投入在人工智能、大数据、边缘计算等技 术上,通过技术赋能,服务金融机构和企业用户。天冕大数据的“信贷解决方案”,主要包含银行、消费金融、小微企业三大领域解决方 案,能够帮助个人、企业更快速高效的获得信贷服务,更好地服务普惠人群。在银行综合解决方案中,主要涵盖风控、技术、联合运营、运维等业务场景。方案可 以根据用户的需求,提供定制化服务,包括用户的风险政策、技术需求、业务运营需 求等方面,支持私有化本地部署。据了解,邮储银行的邮e贷(包含邮薪贷和邮学 贷)产品就使用了天冕的智能风控Wedefend引擎,赋能银行的风险审核评估。天冕的 银行综合解决方案,还可根据银行具体业务提供联合
7、建模服务,模型支持热更新,机 器学习可实现自我演进,以便银行优化决策体系。图5:天冕大数据银行综合解决方案资料来源:天冕大数据对于金融机构,风控是重点业务场景,智能风控场景更是传统机构进行数字化转型的 重点改革方向。天冕大数据的风险技术解决方案中,包含数据服务,大数据信用评 分、联合建模、图像识别、催收质检合格风险初审等多个子模块。其中,在联合建模 上,天冕已经接入10多家数据提供方,能够基于2000+数据维度,丰富贷款审批用户 画像。天冕消费金融解决方案,旨在协助旅游、电商购物、教育等消费金融场景平台搭建信 贷全流程体系,并协助合作机构提升风控技术。该方案从前端进件、审批决策、贷后 管理各模
8、块可任意拆分,能够高度嵌入业务场景。在风控技术上,方案集成了 WeDefend大数据风控核心,最快1.7秒可以输出结果,赋能消费金融机构。图6:天冕大数据消费金融解决方案案例资料来源:天冕大数据获客及营销解决方案模块通过线上精准营销的方式获客,赋能机构用户的营销活动, 深入场景,定位目标群体。实时大数据处理平台能够提供涵盖数据治理、数据监控、 数据平安、数据服务,数据开发等一系列工具,以及数据可视化交互功能,起到提升 企业数据资产的质量和管理效率的作用。另外,天冕大数据在一个热门的科技赛道一一边缘计算上,也有创新业务开展。目 前,天冕的边缘计算方案可以把任何传统的大数据云计算的任务下放到用户终
9、端(即 边缘)来完成,不再需要向云端传送原始的用户隐私数据,能够解决用户平安数据隐 私问题。天冕的边缘计算框架包含一个算法和模型的分发机制,可以从云端实时动态下发算法 代码和模型,具有较强的灵活性。同时该计算框架可以利用终端的硬件(例如GPU, AI 芯片等)来加速计算,并且对使用者透明开放,不需要额外编程。该技术适用于局部强监管,但又需要大量用户数据支撑的行业或业务,通过开源的运 作模式,来取得监管认证,做到合规情况下,又有效地使用用户数据,同时也保护用户隐私信息。户隐私信息。尊余 普通云计算客户担忧数据平安边缘计算V更精简的数据传贿i.e.0.1 KB/设苗V原始数据不离开设函确保数据平安
10、图7:天冕大数据边缘计算平台优势资料来源:天冕大数据本报告由天冕大数据联合零壹智库发布。天冕大数据是金融科技集团WeLab旗下的一 站式金融科技服务商,致力于为金融机构和企业客户赋能。天冕以大数据分析、人工 智能、机器学习为核心技术基础,自主研发出风险管理系统,拥有被反复验证的风控 策略,通过技术赋能金融机构和其他企业开展。扫码可加作者微信交流大头叔叔又广东广州扫一扫上面的二维码图案,加我微信2019年12月5日,中国人民银行宣布,启动金融科技创新监管试点工作,将在北京、 上海、广州、深圳等多个省市开展金融科技应用试点。此举旨在建立、完善适应金融科 技开展的政策措施,打造中国版的“监管沙箱”。
11、金融科技的开展不断推动着金融业向数字化和智能化方向转型。信贷业务作为金融科技 在金融业最重要的应用场景之一,亦成为在此次金融科技创新监管试点的重点关注领域。普惠金融、小微金融等业务的开展,对传统金融机构的信贷业务提出了重大挑战:业务 量激增、用户小而分散、征信白户信用评估难等问题,运用以往的信贷业务流程、规那么 已经无法应对。金融科技的出现,助力解决了大局部传统信贷业务面临的痛点。数字化与智能化,是金融机构信贷业务的重点改革方向,同时也是金融机构增强自身竞 争力的核心之一。本文将选取多个科技赋能信贷典型案例,包括新网银行、网商银行、腾讯云、天冕大数 据、重庆农商银行、苏州银行等,场景涉及农村金
12、融、普惠金融、小微企业金融等,来 探查在人工智能、大数据、云计算、区块链、卫星遥感等技术助力下,信贷业务的智能 化和数字化开展。科技赋能信贷(-) 技术赋能在零售业务上,传统风控较为依赖风控人员的经验,在信用评估上严重依赖如征信报告 等传统金融数据,在贷后管理上依赖人力,存在效率低、本钱高等问题。在对公业务上,传统风控缺乏规范化判定标准,而且由于局部工程信息数据的海量化、 碎片化,导致尽职调查本钱高、工程评估效率较低和真实性考证难度大等问题。特别是 对于成立时间短的创新型小微企业,问题更加严重。在大数据、云计算和人工智能等技术赋能下,金融科技风控在零售传统风控的各环节进 行优化,不仅包括传统风
13、控中的金融数据,同时也包括了与借款申请人还款能力和还款 意愿的风险特征描述。通过大数据技术,将多个维度的数据,例如消费、社交等进行分析整理,以此达成金融 科技下的新型风险评估模式。这样就使得金融科技风控不单一依赖于传统的金融信贷数 据,并且可以对征信白户,即没有任何信用记录的人群进行风险审查,实现对更大消费 群体的覆盖。随着人工智能的进一步开展,银行机构与客户之间的信息不对称问题得以解决。因为传 统零售业务无法获取非授权征信客户信息,而人工智能通过数据和技术相结合,可以构 建出一个信用分析模型,通过利用多维度数据提升决策树、神经网络、随机森林、增量 学习技术以及分群调整技术等机器学习方法,可以
14、为缺少传统征信数据的客户作出客观 的信用风险评估,以便金融机构作出放款与否的决策。在对公业务方面,金融科技风控能够帮助金融机构建立工程评估规范化标准,通过大数 据技术,扩宽授信企业数据获取维度,如税务、海关等,提升工程评估准确度。另外, 金融科技风控还能借助计算机改善传统工程分析,大大减少人为主观因素影响,解放客 户经理在尽调等环节的工作量,通过数据驱动,提高贷款审批效率。以人工智能、大数据、云计算和区块链技术为代表的金融科技,正在推动信贷业务向数 字化和智能化方向转型,智能风控、精准营销、智能网点、智能运营等业务场景模式, 是现在信贷领域开展重点。信贷业务中,随着业务量的增大,以及效率要求的
15、提升,业务的开展对传统金融机构造 成了重大挑战。例如,传统人工风控方式,对于申请需求量大的贷款产品,人工审批速 度远低于进件速度;传统营销方式,由于缺少精准推送,导致局部用户接收到大量无用 信息,一方面降低了金融机构的营销效率,另一方面也影响了用户对金融机构的好感。在金融科技不断迭代下,金融科技服务厂商从数据、技术以及用户三方面切入,通过科 技赋能,为金融机构进行数字化转型,极大地改善了金融机构日益增长的业务需求同传 统模式之间的矛盾。大数据人工智能区块链 云计算 生物识别TEE 物联网 API 流媒体 OCR5G 密钥算法 分布式SE芯片边缘计算GIS 卫星遥感支付标记VR 自动驾驶图1:技
16、术赋能信贷业务资料来源:零壹智库金融科技通过技术赋能,促进了金融机构信贷业务的数字化和智能化转型,将传统业 务模式升级,智能风控、精准营销、智能客服、智能网点、智能运营等多种新型模式 不断出现,为金融机构信贷业务解决了人工本钱高企、效率低下、业务繁琐等多种痛 点。(-) 赋能场景继移动时代的场景流量后,从智能获客到智能反欺诈、再到大数据风控,全链条智能 化的技术能力将成为金融机构信贷业务新的竞争力。通过智能获客,在获取具有信贷 需求的用户基础上,借助人工智能、大数据等技术构建强有力的风控体系,准确评估 用户信用风险,成为促进个人信贷健康开展的重要环节。具体而言,智能获客基于AI 和大数据技术,
17、通过多维度用户数据标签,形成用户画像,深度挖掘用户潜在需求, 以便金融机构制定精准营销策略。从精准营销到智能反欺诈、智能风控,再到物联网下的供应链金融,信贷业务多场景 智能化的现象越来越明显。整体来看,在金融科技赋能下,金融机构信贷业务转型,主要应用在风控、催收、客 服、营销、网点、运营、质检、投顾等主要业务场景。在智能化和数字化信贷链条上,借助大数据技术,金融机构或金融科技厂商能够根据 多维度的用户数据,形成用户画像,以便精准获客。在接入用户后,通过智能风控和 反欺诈系统或体系,能够识别用户的风险和信用。在贷款审批完成后,借助人工智能 和大数据等技术,机构可以实时监测用户贷款状态,做好风险预
18、警工作。在贷后环 节,语音、语义识别等技术能够有效辅助催收。智能质检那么可以帮助金融机构分析催 收员的话述,检测筛出言语不当的地方,生成相应的报告,为用户进行后续整改提供 解决建议。风控模型以人工审核为主,依靠专家 经验以模型、策略体系自动分析决策为 主,人工审核为辅数据来源公司内部资料、央行征信资 料、客户提交资料除传统风控数据来源外的第三方数 据、线上线下多维度数据数据维度数据特征数量少,以基本信 息为主的强变量为主特征数量大于1000,以基本信息、行 为特征信息为主的弱变量信息数据关联性数据关联度低数据关联度图,可父又验证模型设定以线性模型为主,因果关系 强以深度学习、集成学习模型为主,
19、可 应用相关关系表1:传统风控和金融科技风控比照资料来源:零壹智库对于银行等金融机构,许多繁琐、重复的业务流程,以往会通过人工逐层处理的方式 来完成,但是耗时耗力。借助RPA (Robotic Process Automation,即机器人流程自动 化),企业可将日常运营中耗时、枯燥、重复等任务交给“软件机器人”来完成,并且 “软件机器人”可以比人类更快、更精准地执行这些任务,让企业员工更加集中精力 于创造性价值更高的工作上。智能网点那么可借助多项技术,如人工智能、大数据、物联网、云计算等,实现对营业 网点的数字化改造,将大局部柜面业务转移到智能终端上,减轻营业网点运营压力。二、科技赋能信贷典
20、型案例(-)“亿亩田” -基于卫星遥感和人工智能技术的智能化农村金融服务卫星技术看似对于金融行业遥不可及,但已经被应用到信贷业务当中,助力农村金融 开展。2020年8月末,网商银行上线了 “亿亩田”,一个基于卫星遥感和人工智能技术的智能 化农村金融服务,通过人工智能、大数据和卫星遥感技术,赋能农村金融。在这个工程中,网商银行通过卫星遥感和人工智能技术,丰富农户的可信数据,结合 线下贷前调查建立精准全面的农户风险评估及管理体系,为广大种植业用户提供线上 线下融合的贷款申请、贷款审批、贷款提取服务。在技术上,网商银行基于卫星遥感技术以获取种植大户的作物全生长周期遥感影像, 为农户授信策略提供可信任
21、、可追溯的数据源,扩展数据维度。再经由人工智能图像 识别技术分析遥感影像,实现作物品类、种植面积、长势情况等识别,建立作物种植 画像,以便了解农户贷款需求时点及授信动态管理。最后,网商银行运用大数据风控 技术,构建了种植品类(果蔬茶等)行业风控模型,实现对农户的精准授信,提升 “三农”用户融资效率。图2: “亿亩田”卫星遥感技术资料来源:网商银行在大数据建模上,该工程深度结合种植行业特点,参考了中国遥感中心、大地量子、 佳格等专业机构作物模型,基于优质产区种植品类的长势数据,建立不同区域、不同 季节、不同行业种植本钱的差异化风控体系,使用合法合规的数据源进行模型训练, 提高风控准确度。通过新技
22、术赋能,网商银行在贷前阶段能够识别作物种类及面积给出授信额度,贷中 阶段识别作物长势监控潜在风险,动态调整授信额度。在赋能成效上,网商银行预计可以服务个人用户数约500万人,用户主要为种植大 户、职业农民、家庭农场、农业合作社等,年融资笔数约200万笔、年授信额度约600 亿元。(二)基于区块链的长三角征信链应用平台区块链技术正在不断扩充可应用场景,特别是征信链的使用。随着技术的进一步开展,区块链技术也被应用到了信贷业务当中。由人民银行苏州市 中心支行、苏州银行、苏州企业征信服务和苏州同济区块链研究院,合作开发的“基 于区块链的长三角征信链应用平台”用技术有效降低企业融资本钱,助力疏解融资 难
23、、融资贵等问题。工程主要利用区块链技术搭建征信联盟链,构建分布式征信链应用平台,在获得用户 授权且保障数据平安的基础上,实现征信授权、查询使用及征信数据上链存证功能, 为金融机构提供全流程的异地征信服务。通过区块链的不可篡改技术特性,平台将数据哈希摘要上链,保障全程透明可审计, 确保数据使用的合法合规。平台还基于征信链应用平台,使得金融、政务等相关机构 可通过联盟伙伴的方式灵活加入,发布或公开经用户授权的数据资产目录,实现征信 多维度共享。在保障用户数据平安与隐私的前提下,征信链应用平台可向金融机构提 供跨地区征信信息查询功能,能够有效降低机构征信信息获取本钱。另外,平台采用前置系统设计构建数
24、据交互及审计通道,隔离相关业务系统,保障系 统运营稳定。据了解,该工程预期上线时将拥有6家联盟合作伙伴,可服务金融机构达20家,能够 帮助4万户企业解决融资问题。(三)基于多方平安计算的小微企业智慧金融服务多方平安计算是姚期智先生为解决一组互不信任的参与方之间,在保护隐私信息,以 及没有可信第三方的前提下,协同计算问题而提出的理论框架。新网银行基于多方平安计算技术,针对小微企业,开发出了一套智慧金融服务方案。 该方案在获得用户授权的前提下,以及法律合规的情况下,综合运用多方平安计算和 大数据技术,实现征信、社保、税务等多维度数据的联合建模分析,增强了数据互信 共享。方案被应用到小微企业的融资、
25、信贷等金融场景,可以有效提高金融机构风控 能力和授信水平,解决小微企业授信难和融资贵等痛点。机构A加密数据图3:多方平安计算资料来源:零壹智库新网银行的多方平安学习方案,主要在四个维度实现应用创新,分别是风控能力、业 务效率、线上渠道、数据平安。 风控能力。方案基于多方平安计算的多维度风控策略,将银行数据与公安、工商、 征信等数据融合,将银行的欺诈风控、授信风控、反洗钱风控业务实现智能化运作, 能够有效防止线上交易流程中的数据篡改和线上欺诈风险事件发生。 业务效率。通过开放API、H5等,方案能够经由线上渠道面向小微企业提供融资服务,拓宽服务渠道,并且能够大幅降低获客本钱,为场景合作方提供赋能支持。 线上渠道。在OCR、活体监测、线上视频采集等技术,以及企业工商信息、法人公安 身份信息的联网核查帮助下,新网银行能够实现快速受理线上申请,并初步核验证 照及信息的准确性和业务办理亿元,提高银行业务人员的审核效率。另外,结合线 下核审手段,将线上人工座席辅助线下小微企业贷前调查和贷后管理服务,全面提 升金融服务效率和能力。 数据平安。方案运用了数字证书、电子签名等技术,实现电子融资合同的签订,并 将电子指令、合同哈希值、电子签名和时间戳等于具备资质的第三方存证机构进行