《医学统计学简答题总结,必考大题总结,考前必看.docx》由会员分享,可在线阅读,更多相关《医学统计学简答题总结,必考大题总结,考前必看.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、医学统计学简答题总结,必考大题总结,考前必看描述计量资料得集中趋势与离散趋势得指标有哪些? 各指标得适用范围如何?答:描述计量资料集中趋势得统计指标常见得有算数均数、几何均数、中位数。算数均数适用于描述对称分布资料得集中位置,尤其就是正态分布得资料;几何均数一般用来描述等比资料与对数正态分布资料得集中位置;中位数可以运用于任何分布得资料,尤其就是偏态分布。分布不明或分布末端无确定值得资料。 描述离散趋势得指标常见得有极差、四分位数间距、方差、标准差与变异系数.极差与四分位数间距可以用于任何分布,后者比前者稳定,但就是这两个指标都不能综合反映各视察值得变异程度;方差与标准差最常用,但要求资料近似
2、正态分布;变异系数可以用于多组资料间量纲不同或均数相差较大得时候变异程度得比较。频数分布表(图) 得用途有哪些?描述资料得分布类型,就是对称分布还就是偏态分布;2 描述变量得分布特征:集中趋势与离散趋势;3 便于发觉某些离群值或异样值;4 便于进一步得统计分析与处理;当样本含量够大得时候,我们还可以以频率作为概率得估计值。变异系数与标准差有何异同?答:不同点:变异系数主要用于量纲不同得变量间,或均数相差较大得变量间得变异程度得比较.所以变异系数就是没有量纲得,而标准差就是方差得平方根,标准差得量纲与原指标得一样,它适用于近似正态分布得资料。相同点与联系:变异系数与标准差都就是用于对称分布资料,
3、尤其就是正态分布得资料,且还可以知道变异系数就是由标准差计算得到得。应用相对数得留意事项:、防止概念混淆 2、频率型指标得说明要紧扣总体与属性 3、计算相对数时分母应有足够数量 4、正确计算合计频率 5、留意资料得可比性 6、正确进行相对数得统计推断。为什么不能以构成比代率?请联系实际加以说明。率与构成比所说明得问题不同,因而绝不能以构成比代率。构成比只能说明各组成部分得比重或分布,而不能说明某现象发生得频率或强度。、 二项分布:假如每个对象阳性结果得发生概率为π,阴性结果得概率为 1π,而且各个视察对象得结果就是相互独立得,那么,重复视察 N 个人,发生阳性次数得概率分布为二项分
4、布。适用条件:1 试验只会出现两种对立得结果2每次试验阳性与阴性结果概率固定不变每次试验相互独立。性质与特征:形态取决于π与n,当π接近于0、5 时,分布对称,离 0、5 越远,分布对称性越差,当 n 增大时,分布趋于对称 2,高峰在μ=π处 3、二项分布得总体均数μ=nπ,方差=nπ(1-π),nπ与 n(1π)都大于 5 时,近似听从正态分布 oi si n 分布:可以瞧作就是每个视察对象阳性结果得发生发生概率π很小,而视察例数 n 很大时得二项分布。特征:1、它得分布属于离散型分布 2、当总体均数入值小于 5 时为偏锋,入
5、愈小分布愈偏,随着入增大,分布趋向对称 3、总体均数与总体方差相等。正态分布得概念, 图形特征与应用:正态分布就是自然界最常见得一种分布,特点就是中间频数最多,两边频数渐少且对称;表现为钟形曲线,曲线下面积为 1;μ确定曲线在横轴上得位置,u 增大,曲线沿横轴向右移,反之曲线沿横轴向左移;σ确定曲线得形态,当 u 恒定时它越大数据越分散,曲线越矮胖;σ越小数据越集中,曲线越瘦高;C正态分布得应用:A 确定医学参考值范围:指特定得正常人群得解剖,生理,生化指标及组织代谢产物含量等数据中大多数个体得取值所在得范围。范围有两种:百分位数,适用于任何分布类型得资料.正态分
6、布法,若听从正态分布,可以依靠正态分布规律计算。质量限制图 C 计算频率、频数 D 作为统计学基础。标准误与标准差得区分:1)标准差反映个体值散布得程度,标准误反映精确知道总体参数得程度 2)标误小于标差)样本含量越大,标误越小,其样本均数更有可能接近于总体均数,但标差不随样本含量得变更而有明显方向性变更,随着样本含量得增大,标差可能增大也可能减小。t 分布特点:1、t 分布就是以 0 为中心得单峰分布,左右完全对称。、越小,值越分散,曲线得峰部越矮,尾部越高,3 当自由度 v 渐渐增大时。分布渐渐靠近标准正态分布,当 v 趋于无穷时,t 分布就完全成为标准正态分布. 假设检验:也称显着性检验
7、,利用小概率反证法思想,首先依据设计与探讨目得提出某种假设,再依据现有得资料供应得信息,推断此假设应当拒绝还就是不拒绝。步骤:1,建立检验假设确定检验水准 2,计算检验统计量,确定 P 值,做出推断。假设检验留意事项:A 要有严密得抽样探讨设计,样本得代表性与组间得均衡性;B 正确选用检验方法。依据探讨目得,设计类型,变量类型与样本得大小选择恰当得检验方法 C、正确理解值得含义.差别有统计学意义,不能理解为两者差异大,也不能理解为所分析得指标在实际应用中就有显着效果。D 应结合专业学问理解统计推断得结论,即统计学差异显着得意义与实际意义得差别。E 写探讨报告时,应写出检验统计量,检验水准&al
8、pha;,并注明单双侧及值得准确范围. 假设检验中 值涵义:就是指在零假设成立得条件下,出现统计量目前值及更不利于零假设数值得概率。(课本).就是指从o 规定得在体内中进行随机抽样,所视察到得等于及大于现有样本检验统计量得概率。检验水准 α:无效假设为真时,拒绝无效假设得概率。α就是由探讨者事先确定得,常用α值有 0、05,0、01、 假设检验中检验水准 α与 与 P 值得关系?以检验为例,α与 P 都可用 t 分布得尾部得面积大小表示,所不同得就是:α值就是指在统计推断时预先设定一个小概率值,即原假设0 成立,经检验被拒
9、绝得概率。P 值就是由实际样本计算得到得,就是指在o 成立得前提下,出现等于或大于现有检验统计量得概率。假设检验就是如何确立单双侧?1)假设检验中依据专业学问与探讨目得来确定采纳单侧还就是双侧)若依据专业学问有充分把握可以解除某一侧,可采纳单侧检验)在没有充分理由进行单侧检验时,为稳妥起见,应选用双侧检验. 简述两类错误及其关系?假设检验就是由样本信息对总体特征进行推断,因此无论做出那种推断结论,都有可能发生错误。假设检验时,拒绝原本正确得0,犯第类错误,称为弃真错误;不能拒绝原本错误得 H,犯第类错误,称存伪错误.犯第一类错误得概率用α表示,其数值依据探讨者得要求来确定;犯其次类
10、错误得概率用β表示,它只有与特定得 H1 结合起来才有意义。对某一详细得检验来说,当样本量肯定时,α越大β越小;α越小β越大。为了同时减小α与β,只有通过增加样本含量削减抽样误差来实现。影响检验效能得因素:总体参数得差异越大,个体差异(标准差)越小,样本量越大,检验水准α越大(越松),检验效能越大。为什么假设检验得结论不能肯定化 ?假设检验得结论就是依据小概率事务在一次试验中实际不行能发生得原理作出得,若检验水准α0、0则 P0、5 表示在 Ho 成立得条件下,出现大于或等于现有统计量得概率等于
11、或小于 0、5,就是小概率事务,即在一次试验中几乎不行能出现得事务,因此拒绝 Ho,但并非o 不成立,肯定 H可能犯 I 型错误,反之,若 P>、05、则不拒绝 H,但并非 Ho 肯定成立,不拒绝o 有可能犯 II 型错误。方差分析得基本思想:依据资料得试验设计类型把全部视察值 总得离均差平方与与 自由度分解为两个或多个部分,然后将各影响因素产生得变异与随机误差进行比较,以推断各部分得变异与随机误差相比,就是否有统计学意义. 方差分析得前提条件:1)各样本就是相互独立得随机样本,均听从正态分布 2)各样本得总体方差相等即方差齐性。随机区组设计:事先将全部受试对象按自然属性分为若干区组,原
12、则就是各区组内得受试对象得特征相同或相近,且受试对象数与处理因素得水平数相等。然后再将每个区组内得视察对象随机地安排到各处理组,这种设计叫随机区组设计。得 方差分析后为什么不能干脆做两两比较得 t 检验?答:会增加犯一类错误得概率,假如比较次数就是 k.每次检验水准就是α ,则犯一类错误得累积概率为 1-(1α)k ,明显高于原来得α.若要做两两比较得检验,则其检验水准应减小,可按 Bonffroni 方法或 Sidk 方法进行调整,同时两样本均数之差标准误得计算应当采纳多个样本得数据,而不仅仅就是被比较两组得数据。得 方差分析中得 F 检验为何就是单侧检验
13、?答:方差分析中检验统计量 F 得计算通常就是用某部分得均方除以误差得均方,其中分母误差部分得均方仅包含随机因素得作用,而分子某部分得均方不但含有相应处理因素或交互作用得效应,而且还含有随机因素得作用,因此算得得 F 值从理论上讲应大于或等于 1,不会小于 1、因此方差分析时得界值采纳单侧检验得界值。就是否肯定要经过方差分析发觉有统计学意义后, 再作均数间得两两比较?答:一般就是这样.事实上,经方差分析发觉有统计学意义后,再作均数间两两比较属于未安排好得事后比较.而 LD-t 检验、Dunttt 检验与 Tuky HSD 检验等多重比较就没有必要事先进行方差分析。分析实际资料时,有事可能会出现
14、以下两种状况:一就是方差分析有统计学意义,但两两比较均无统计学意义,二就是方差分析物统计学意义,但两两比较中某些均数间有统计学意义。对于这两种现象,假如 P 值在检验水准α旁边,则下结论时应特殊谨慎,通常应当增加样本量后再作分析与推断。实际频数与理论频数:实际频数就就是实际视察单位个数,理论频数就是在假设多个率或构成比相等得前提下由合计率(构成比)推算出来得频数。述 简述 X 2 检验得用途?主要用于:1、比较两个或多个独立样本频率或独立样本频率分布;2、比较配对设计量样本频率分布;3 单样本分布得拟合优度;、推断两个变量或特征之间有无关联性。非参数检验: 就是不依靠总体分布类型,
15、也不对总体参数进行统计推断得一类统计方法.应用条件:)不满意正态分布与方差齐性齐性条件得小样本资料)分布不明得小样本资料)一端或两端就是不确定数值得资料)等级资料。优点:a 适用范围广,对变量得分布无特别要求 b 对数据要求不严,对某些指标不便精确测定只能以严峻程度、优劣等级做记录得资料也可应用。缺点:对于符合参数检验得资料假如用参数检验,由于没有充分利用资料供应得信息(用秩次而非原始数据计算统计量),故检验效能低于参数检验。若要使检验效能相同,往往须要更大得样本含量。线性相关分析得基本步骤:1)绘制散点图,瞧有无线性关系 2)估计简洁相关系数 r)检验简洁相关系数 P 就是否有统计学意义。应
16、用直线相关分析时应留意哪些问题?进行相关分析之前,应绘制散点图。当散点分布有直线趋势时,才相宜作相关分析。另外散点图还能提示资料有无异样,若出现异样点时慎用相关。相关分析要求两变量为听从双变量正态分布得随机变量,因此当有一个变量得数值人为选定时莫作相关分析。样本得相关系数接近于零并不意味着两变量间肯定无相关性,也可能存在非线性(曲线)关系.相关关系不肯定就是因果关系,也可能就是伴随关系,有相关关系不能证明事物间确有内在联系.分层资料不能盲目合并,否则易出假象。线性回来模型得适用条件:1)线性:因变量 Y 与自变量呈线性关系 2)独立:每个个体视察值之间相互独立 3)正态性:在肯定范围内,随意给
17、定 X 值,其对应得随机变量 Y 听从正态分布 4)方差齐性,在肯定范围内,不同得值对应得随机变量 Y 得方差相等。回来分析得基本步骤:绘制散点图;求回来系数与常数项(最小二乘法);回来系数与常数项得假设检验(回来系数 t检验);回来方程得假设检验与说明(单元素方差分析). 相关与回来分析得区分与联系: 区分:、资料要求,线性回来要求应变量 y 就是听从正态分布得随机变量,x 就是可以精确测量与严格限制得变量,一般称为 1 型回来;线性相关要求两个变量 x 与 y 为听从双变量正态分布得得随机变量,两变量之间如进行回来分析称为 2 型回来。2、应用目得:说明两变量之间得关联关系用相关分析,说明
18、两变量之间得依存关系用回来分析.3、意义:回来系数 b 表示每增减一个单位时,平均变更 b 个单位;相关系数 r 说明具有线性相关得两个变量间关系得亲密程度与相关方向。、计算:r=、取值范围 全体实数r 正负 。6、单位 b 就是有量纲得,受计量单位得影响,r 就是无量纲得,不受 xy 计量单位得影响联系 1、方向一样对一组数据若能同时计算与 r 她们得符号就是一样得2、假设检验等价对同一样本,r 与 b 得假设检验得到得 t 值相等 3、用回来说明相关 确定系数 既 ss 回/s总 , 回来平方与越接近总平方与则2 越接近,说明相关性越好。简述简洁线性回来分析时应留意得事项?1、做线性回来分
19、析时要有现实意义,不能把两种毫无关系得现象作回来分析,必需对两种现象得内在联系有所相识。2、在进行回来分析之前,应先绘制散点图。当视察点得散布有直线趋势时,才相宜作线性回来分析。假如散点图呈现明显得曲线趋势,应使之直线化再作线性回来分析,散点图还可以提示有无异样点。3、线性回来方程得应用范围一般以自变量得取值范围为限,若无充分理由证明超过该范围仍旧就是直线关系,不应外延。4、双变量正态分布资料得线性关联关系经假设检验有统计学意义,则直线回来关系也有统计学意义,两个检验结果等价。5、有直线回来关系不肯定有因果关系,也可以就是伴随关系,反馈关系等,有回来或相关关系时不能证明事物间确有内在联系,因变
20、量与自变量之间得联系,应当结合专业学问来说明。经检验认为回来方程有意义,就是否可以认为两变量之间有因果关系?答:两变量不肯定存在因果关系。简洁线性回来定量考察应变量与自变量间得线性依存关系,统计学检验表明回来方程有意义,只就是说明二者数量上得线性联系存在,至于该内在联系得性质,则可能就是伴随关系、反馈关系、因果关系等尚需结合专业学问来确定. 多重线 性回来模型:1)线性,指反映变量 Y 得总体平均值于自变量 X 成线性关系。2)独立性,随意两个记录相互独立 3)正态性,误差项听从正态分布)等方差性,自变量 X 取值范围内,不论 X 取什么值 Y 都具有相同得方差。诊断:残差分析,残差得直方图推
21、断分布得正态性,绘制残差与反应变量预料值得散点图就是否满意线性与方差齐性。应用多重线性回来得留意事项:A 因变量 Y 就是听从正态分布得连续型随机变量;B 自变量最好就是连续型变量,也可以就是等级资料,若自变量就是多项无序分类资料,则必需先哑变量化后才能进入模型;C 利用自变量对因变量进行预料就是回来分析得主要目得之一,此时,只能在得取值范围内进行;D 自变量之间不能存在多重共线性。回来分析留意事项:个体间独立;足够得样本量;相宜得变量赋值;模型得评价;标准化回来系数得作用;结果报告。log sti 回来与多重线性回来得区分与联系:1losic 回来分析要求因变量必需就是分类资料,而多重线性回
22、来要求因变量必需听从正态分布 2logistic 回来分析对自变量无严格要求,而多重线性回来一般要求自变量就是定量资料,也可就是有序资料联系:均就是用来分析多个自变量与一个因变量之间得关系。β β0 表示在模型中全部自变量均为 时,即在不接触任何潜在危急/爱护因素条件下,效应事务优势(odds)得对数值。β βi 为自变量 Xi 得 Logitic 回来系数,表示在限制其它自变量时,自变量 Xi 每改变一个单位所引起 效应事务优势变更得对数值 。生存资料得特点:1 有生存结局与生存时间两个因变量 2 生存时间分布不正态非负且右偏。3、可能含有删失数据。
23、og-ra k 检验就是两条或多条生存曲线比较得非参数方法之一.可用于整条生存曲线得比较,也适用于寿命表资料及多组生存率间得比较;Logan检验属于单因素分析方法,其应用条件就是除比较因素外,影响生存率得各混杂因素在不同得组间均衡。否则,可采纳 Cox 回来.可计算两组死亡得相对危急度(elative rato,RR). Cox 回来模型:以生存结局与生存时间为因变量,可同时分析众多因素对生存期得影响;分析带有删失生存时间得资料;不要求资料听从特定得分布类型. βj 得实际意义:在其她自变量固定不变得条件下,变量 Xi 每增加一个单位所引起得风险比得自然对数。RRi 得实际意义:在其
24、它协变量不变得条件下,变量 Xi 每增加一个单位所引起得风险比或相对危急度。试验设计 得基本要素有哪些:探讨对象、探讨因素、结局指标。受试对象就是处理因素作用得客体。就是依据试验目得确定得探讨总体。依据探讨目得不同,医学探讨得对象可以使人动物与植物,也可以就是某个器官、细胞等生物材料。处理因素就是依据探讨目得得某种外部干预措施,试验效应就是处理对象得反应与结局,通过视察指标来实现。选择探讨对象得 原则:受益、代表性、均衡可比、依从性、知情同意。试验设计得原则:比照、随机化、及重复原则、试验设计时须要设立比照以保证组间得均衡性、就是解除混杂因素得主要手段.随机化即每个受试对象分到试验组与比照组得
25、机会相等。就是使各对比组间在大量不行限制得非处理因素得分布方面尽量保持均衡一样性得重要措施.重复就是指在相同得试验条件下进行多次探讨或多次视察,以提高试验得牢靠性与科学性。估计样本得意义何在?进行估计样本量估计须要确定哪些前提条件?意义:在试验设计中要对样本;例数进行估计,假如例数太少,有可能把个别现象误认为就是普遍现象。把偶然性或就是巧合现象当做就是必定得规律,以致错误得推论到总体;例数太多,会增加工作得难度,势必造成人力、物力与时间得奢侈。因此保证明验结果有肯定得牢靠得条件下,确定最少得样本例数,可以节约人力,物力、经费。合适得样本量:就是指在保证肯定估计精度与检验功效得前提下,所需最少得
26、视察单位数。估计样本含量得四要素第一类错误概率α,α越小,所需样本量越大;检验功效(1β)或其次类错误概率β,其次类错误概率越小,检验功效越大,所需样本量越大容许误差δ,δ越小,则样本量越大,总体标准差σ,σ越小,样本量越小。标准化偏回来系数与偏回来系数有什么区分?先对应变量与自变量做标准正态转换,再建立回来方程,所得回来方程中得回来系数即标准化偏回来系数。标准化偏回来系数与其变量得计量单位无关,可以用来评价对 Y 得贡献大小。而偏回来系数与其变量计量单位有关,不能干脆用力扭评价对得贡献大小,表示在其她自变量固定不变得状况下,每改变一个测量单位所引起得 Y 得平均变更量。