高一数学知识点:集合与函数、反比例函数.docx

上传人:l*** 文档编号:63009192 上传时间:2022-11-23 格式:DOCX 页数:9 大小:20.26KB
返回 下载 相关 举报
高一数学知识点:集合与函数、反比例函数.docx_第1页
第1页 / 共9页
高一数学知识点:集合与函数、反比例函数.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《高一数学知识点:集合与函数、反比例函数.docx》由会员分享,可在线阅读,更多相关《高一数学知识点:集合与函数、反比例函数.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学知识点:集合与函数、反比例函数高一数学反比例函数学问点梳理 高一数学反比例函数学问点梳理 反比例函数 形如ykx(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数 当K0时,反比例函数图像经

2、过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 学问点: 1.过反比例函数图象上随意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线ykx,若在分母上加减随意一个实数(即yk(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高一数学学问点归纳:反比例函数的概念和用法 高一数学学问点归纳:反比例函数的概念和用法 形如ykx(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属

3、于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数 当K0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 学问点: 1.过反比例函数图象上随意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线ykx,若在分母上加减随意一个实数(即yk(xm)m为常数),就相当于

4、将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高一数学上册学问点整理:反比例函数 高一数学上册学问点整理:反比例函数 反比例函数形如y=k/x(k为常数且k0)的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。如图,上面给出了k分别为正和负(2和-2)时的函数图像。当K0时,反比例函数图像经过一,三象

5、限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。学问点:1.过反比例函数图象上随意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。2.对于双曲线y=k/x,若在分母上加减随意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高一数学学问点:集合与函数概念 高一数学学问点:集合与函数概念 集合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名

6、词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的全部领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为

7、元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子集。 集合的几种运算

8、法则 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作AB(或BA),读作“A并B”(或“B并A”),即AB=x|xA,或xB交集:以属于A且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作AB(或BA),读作“A交B”(或“B交A”),即AB=x|xA,且xB例如,全集U=1,2,3,4,5A=1,3,5B=1,2,5。那么因为A和B中都有1,5,所以AB=1,5。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说AB=1,2,3,5。图中的阴影部分就是AB。好玩的是;例如在1到105中不是3,5,7的整倍数的数有多少个。

9、结果是3,5,7每项减集合 1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)(B-A)例如:A=a,b,c,B=b,d,则A?B=a,c,d对称差运算的另一种定义是:A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n=1,2,3,n,假如存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB=xxA,x不属于B。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U

10、不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA=x|xU,且x不属于A空集也被认为是有限集合。例如,全集U=1,2,3,4,5而A=1,2,5那么全集有而A中没有的3,4就是CuA,是A的补集。CuA=3,4。在信息技术当中,经常把CuA写成A。 集合元素的性质 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这特性质主要用于推断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必需为自然数。3.互异性:集合中随意两个元素都是不同的对象。如写成1,1,2,等同于1,2。互异性使

11、集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:a,b,cc,b,a是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A=x|x2,集合A中全部的元素都要符合x2,这就是集合纯粹性。6.完备性:仍用上面的例子,全部符合x2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。 集合有以下性质 若A包含于B,则AB=A,AB=B 集合的表示方法 集合常用大写拉丁字母来表示,如:A,B,C而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个

12、等式来表示的,例如:A=的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。 常用的有列举法和描述法。1.列举法常用于表示有限集合,把集合中的全部元素一一列举出来写在大括号内这种表示集合的方法叫做列举法。1,2,3,2.描述法常用于表示无限集合,把集合中元素的公共属性用文字符号或式子等描述出来写在大括号内这种表示集合的方法叫做描述法。x|P(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,

13、记作N*(2)非负整数集内解除0的集,也称正整数集,记作Z+;负整数集内也解除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。Q=p/q|pZ,qN,且p,q互质(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律AB=BAAB=BA集合结合律(AB)C=A(BC)(AB)C=A(BC)集合安排律A(BC)=(AB)(AC)A(BC)=(AB)(AC)集合德.摩根律集合 Cu(AB)=CuACuBCu(AB)=CuACuB

14、集合“容斥原理”在探讨集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A=a,b,c,则card(A)=3card(AB)=card(A)+card(B)-card(AB)card(ABC)=card(A)+card(B)+card(C)-card(AB)-card(BC)-card(CA)+card(ABC)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。集合汲取律A(AB)=AA(AB)=A集合求补律ACuA=UACuA=设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)(BUC)=BC(BC)=BUC=EE=特别集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q* 第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁