《信息论基础教程.ppt》由会员分享,可在线阅读,更多相关《信息论基础教程.ppt(195页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 信息论基础教程信息论基础教程 李亦农李亦农 李梅李梅 编著编著 北京邮电大学出版社Beijing University of Posts and Telecommunications Press 目录目录第一章第一章 绪论绪论第二章第二章 信息的度量信息的度量 第三章第三章 信源及信息熵信源及信息熵 第四章第四章 信道及信道容量信道及信道容量 第五章第五章 无失真信源编码无失真信源编码 第六章第六章 有噪信道编码有噪信道编码 第七章第七章 限失真信源编码限失真信源编码 BUPT Press 第一章第一章 绪论绪论1.1 信息的概念信息的概念1.2 信息论研究的对象、目的和内容信息论研究的对象
2、、目的和内容 BUPT Press1.1 信息的概念信息的概念 信息论信息论是通信的数学基础,它是随着通信技术的发展而形成和发展起来的一门新兴的横断学科。信息论创立的标志是1948年ClaudeShannon(香农香农)发表的论文“AMathematicalTheoryofCommunication”。在这篇文章中香农创造 性的采用概率论的方法来研究通信中的问题,并且对信息给予了科学的定量描述,第一次 提出了信息熵的概念。1928年,哈特莱哈特莱(Hartley)首先提出了 用对数度量信息的概念。一个消息所含有的 信息量用它的可能值的个数的对数来表示。香农香农 BUPT Press 香农信息香
3、农信息:信息是事物运动状态或存在方式的不确定性的描述信息是事物运动状态或存在方式的不确定性的描述。可运用研究随机事件的数学工具概率来测度不确定性的大小。在信息论中,我们把消息用随机事件表示,而发出这些消息的信源则用随机变量来表示。我们把某个消息 出现的不确定性的大小,定义为自信息自信息,用这个消息出现的概率的对数的负值来表示:自信息同时表示这个消息所包含的信息量,也就是最大能够给予收信者的信息量。如果消息能够正确传送,收信者就能够获得这么大小的信息量。BUPT Press 信源所含有的信信息息量量定义为信源发出的所有可能消息的平均不确定性,香农把信源所含有的信息量称为信信息息熵熵。自信息的统计
4、平均定义为信源熵信源熵,即 这里的q表示信源消息的个数。信息熵表示信源的平均不确定性的大小,同时表示信源输出的消息所含的平均信息量。因此,虽然信源产生的消息可能会含有不同的信息量。在收信端,信源的不确定性得到了部分或全部的消除,收信者就得到了信息。信息在数量上等于通信前后“不确定性”的消除量(减少量)。BUPT Press1.2 信息论的研究对象、目的和内容信息论的研究对象、目的和内容 信息论的研究对象是信息论的研究对象是广义的通信系统,它把所有的信息流通系统都抽象成以下的模型:图1.1 通信系统模型 BUPT Press 这个通信系统主要分成五个部分:(1)信源信源。顾名思义,信源是产生消息
5、和消息序列的源。(2)编码器编码器。编码就是把消息变成适合在信道传输的物理量,这种物理量称为信号信号。编码器可分为信源编码器、信道编码器。信源编码的目的为了提高通信系统的有效性有效性和提高信息传输的可可靠性靠性。在实际的通信系统中,可靠性和有效性常常相互矛盾。(3)信道信道。信道是指通信系统把载荷消息的信号从发送端送到接收端的媒介或通道,是包括收发设备在内的物理设施。(4)译码器译码器。译码就是把信道输出的已迭加了干扰的编码信号进行反变换,变成信宿能够接受的消息。译码器也可分成信源译码器和信道译码器。(5)信宿信宿。信宿是消息传送的对象,即接受消息的人或机器。BUPT Press 信息论研究的
6、是关于这个通信系统的最根本、最本质的问题。例如:什么是信息?如何度量信息?怎样确定信源中含有多少信息量?对于一个信道,它传输信息量的最高极限(信道容量)是多少?为了能够无失真的传输信源信息,对信源编码时所需的最少的码符号数是多少?(无失真信源编码即香农第一定理)在有噪信道中有没有可能以接近信道容量的信息传输率传输信息而错误概率几乎为零?(有噪信道编码即香农第二定理)如果对信源编码时允许一定量的失真,所需的最少的码符号数又是多少?(限失真信源编码即香农第三定理)BUPT Press目前,对信息论的研究内容一般有三种理解:(1)狭义信息论狭义信息论:又称香农信息论香农信息论。主要通过数学描述与定量
7、分析,研究通信系统从信源到信宿的全过程,包括信息的测度、信道容量以及信源和信道编码理论等问题,强调通过编码和译码使收、发两端联合最优化,并且以定理的形式证明极限的存在。这部分内容是信息论的基础理论。(2)一一般般信信息息论论:也称工工程程信信息息论论。主要也是研究信息传输和处理问题,除香农信息论的内容外,还包括噪声理论、信号滤波和预测、统计检测和估计、调制理论、信息处理理论以及保密理论等。(3)广义信息论广义信息论:不仅包括上述两方面内容,而且包括所有与信息有关的自然和社会领域,如模式识别、计算机翻译、心理学、遗传学、神经生理学、语言学、语义学甚至包括社会学中有关信息的问题。BUPT Pres
8、s第二章第二章 信息的度量信息的度量 2.1 自信息和互信息自信息和互信息 2.2 平均自信息平均自信息 2.3 平均互信息平均互信息 BUPT Press关于信息的度量有几个重要的概念:(1)自自信信息息:一个事件(消息)本身所包含的信息量,它是由事件的不确定性决定的。比如抛掷一枚硬币的结果是正面这个消息所包含的信息量。(2)互互信信息息:一个事件所给出关于另一个事件的信息量,比如今天下雨所给出关于明天下雨的信息量。(3)平平均均自自信信息息(信信息息熵熵):事件集(用随机变量表示)所包含的平均信息量,它表示信源的平均不确定性。比如抛掷一枚硬币的试验所包含的信息量。(4)平均互信息平均互信息
9、:一个事件集所给出关于另一个事件集的平均信息量,比如今天的天气所给出关于明天的天气的信息量。BUPT Press2.1 自信息和互信息自信息和互信息2.1.1 自信息自信息 随机事件的自信息量 是该事件发生概率 的函数,并且应该满足以下公理化条件:1.是 的严格递减函数。当 时,概率越小,事件发生的不确定性越大,事件发生以后所包含的自信息量越大。2 极限情况下当=0时,;当=1时,=0。3 另外,从直观概念上讲,由两个相对独立的不同的消息所提供的信息量应等于它们分别提供的信息量之和。可以证明,满足以上公理化条件的函数形式是对数形式。BUPT Press 定定义义2.1 随机事件的自自信信息息量
10、量定义为该事件发生概率的对数的负值。设事件 的概率为 ,则它的自信息定义为 从图2.1种可以看到上述信息量的定义正 是满足上述公理性条件的函数形式。代表两种含义:当事件发生以前,等于事件发生的不确定性的大小;当事 件发生以后,表示事件所含有或所能提 供的信息量。图2.1 自信息量 BUPT Press自信息量的单位与所用对数的底有关。(1)常取对数的底为2,信息量的单位为比特(bit,binaryunit)。当 =1/2时,=1比特,即概率等于1/2的事件具有1比特的自信息量。(2)若取自然对数(对数以e为底),自信息量的单位为奈特(nat,naturalunit)。1奈特=比特=1.443比
11、特 (3)工程上用以10为底较方便。若以10为对数底,则自信息量的单位为哈特莱(Hartley)。1哈特莱=比特=3.322比特(4)如果取以r为底的对数(r1),则=进制单位 1r进制单位=比特 BUPT Press 互信息互信息 定义定义2.2 一个事件 所给出关于另一个事件 的信息定义为互信息互信息,用 表示。互信息 是已知事件 后所消除的关于事件 的不确定性,它等于事件 本身的不确定性 减去已知事件 后对 仍然存在的不确定性 。互信息的引出,使信息得到了定量的表示,是信息论发展的一个重要的里程碑。BUPT Press2.2 平均自平均自信息信息 2.2.1 平均自信息(信息熵)的概念平
12、均自信息(信息熵)的概念 自信息量自信息量是信源发出某一具体消息所含有的信息量,发出的消息不同所含有的信息量不同。因此自信息量不能用来表征整个信源的不确定度。我们定义平均自信息量平均自信息量来表征整个信源的不确定度。平均自信息量又称为信息熵信息熵、信源熵信源熵,简称熵熵。因为信源具有不确定性,所以我们把信源用随机变量来表示,用随机变量的概率分布来描述信源的不确定性。通常把一个随机变量的所有可能的取值和这些取值对应的概率 称为它的概概率空间率空间。BUPT Press 定义定义2.3 随机变量X的每一个可能取值的自信息 的统计平均值定义为随机变量X的平均自信息量平均自信息量:这里q为的所有X可能
13、取值的个数。熵熵的单位也是与所取的对数底有关,根据所取的对数底不同,可以是比特/符号、奈特/符号、哈特莱/符号或者是r进制单位/符号。通常用比特/符号为单位。一般情况下,信息熵并不等于收信者平均获得的信息量,收信者不能全部消除信源的平均不确定性,获得的信息量将小于信息熵。BUPT Press 熵函数的性质熵函数的性质 信息熵 是随机变量X的概率分布的函数,所以又称为熵函数熵函数。如果把概率分布 ,记为 ,则熵函数又可以写成概率矢量 的函数的形式,记为 。熵函数 具有以下性质:1.对称性:对称性:性说明熵函数仅与信源的总体统计特性有关。BUPT Press2.确定性:确定性:在概率矢量中,只要有
14、一个分量为1,其它分量必为0,它们对熵的贡献均为0,因此熵等于0。也就是说确定信源的不确定度为0。3.非负性:非负性:对确定信源,等号成立。信源熵是自信息的数学期望,自信息是非负值,所以信源熵必定是非负的。4.扩扩展性:展性:这个性质的含义是增加一个基本不会出现的小概率事件,信源的熵保持不变。5.连续性:连续性:即信源概率空间中概率分量的微小波动,不会引起熵的变化。BUPT Press6递增性递增性 这性质表明,假如有一信源的n个元素的概率分布为 ,其中某个元素 又被划分成m个元素,这m个元素的概率之和等于元素 的概率,这样得到的新信源的熵增加,熵增加了一项是由于划分产生的不确定性。7.极值性
15、:极值性:式中n是随机变量X的可能取值的个数。极值性表明离散信源中各消息等概率出现时熵最大,这就是最大离散熵定理。连续信源的最大熵则与约束条件有关。BUPT Press8.上凸性上凸性:是严格的上凸函数,设 则对于任意小于1的正数 有以下不等式成立:凸函数在定义域内的极值必为极大值,可以利用熵函数的这个性质可以证明熵函数的极值性。BUPT Press 直观来看,随机变量的不确定程度并不都是一样的。香农香农指出,存在这样的不确定性的度量,它是随机变量的概率分布的函数,而且必须满足三个公理性条件:1.连续性条件连续性条件:应是的连续函数;2.等概时为单调函数等概时为单调函数:应是的增函数;3.递增
16、性条件递增性条件:当随机变量的取值不是通过一次试验而是若干次试验才最后得到时,随机变量在各次试验中的不确定性应该可加,且其和始终与通过一次试验取得的不确定程度相同,即:其中 BUPT Press 联联合合熵熵与条件与条件熵熵 一个随机变量的不确定性可以用熵来表示,这一概念可以方便地推广到多个随机变量。定义定义2.4 二维随机变量 的概率空间表示为 其中 满足概率空间的非负性和完备性:BUPT Press 二维随机变量 的联合熵联合熵定义为联合自信息的数学期望,它是二维随机变量 的不确定性的度量。定义定义2.5 给定 时,的条件熵条件熵:其中,表示已知 时,的平均不确定性。BUPT Press各
17、类熵之间的关系:各类熵之间的关系:1联合熵与信息熵、条件熵的关系:这个关系可以方便地推广到N个随机变量的情况:称为熵函数的链规则熵函数的链规则。推推论论:当二维随机变量X,Y相互独立时,联合熵等于X和Y各自熵之和:2 条件熵与信息熵的关系:3 联合熵和信息熵的关系:当X、Y相互独立时等号成立。BUPT Press 2.3 平均互平均互信息信息 平均互信息的概念平均互信息的概念 为了从整体上表示从一个随机变量Y所给出关于另一个随机变量 的信息量,我们定义互信息 在的 联合概率空间中的统计平均值为随机变量X和Y间的平均互信息平均互信息:定定义义2.6 BUPT Press 平均互信息的性平均互信息
18、的性质质 1.非负性非负性:平均互信息是非负的,说明给定随机变量Y后,一般来说总能消除一部分关于X的不确定性。2.互易性(对称性):互易性(对称性):对称性表示Y从X中获得关于的信息量等于X从Y中获得关于的信息量。3.平均互信息和各平均互信息和各类熵类熵的关系的关系:当 统计独立时,BUPT Press4.极值性:极值性:极值性说明从一个事件提取关于另一个事件的信息量,至多只能是另一个事件的平均自信息量那么多,不会超过另一事件本身所含的信息量。5.凸函数性凸函数性:定理定理2.1 当条件概率分布 给定时,平均互信息 是输入分布 的上凸函数。定理定理2.2 对于固定的输入分布 ,平均互信息量 是
19、条件概率分布 的下凸函数。BUPT Press 数据数据处处理定理理定理 为了证明数据处理定理,我们需要引入三元随机变量 的平均条件互信息和平均联合互信息的概念。定义定义2.7 平均条件互信息平均条件互信息 它表示随机变量 给定后,从随机变量 所得到得关于随机变量 的信息量。定定义义2.8 平均联合互信息平均联合互信息 它表示从二维随机变量 所得到得关于随机变量 的信息量。BUPT Press 定理定理2.3(数据处理定理)(数据处理定理)如果随机变量 构成一个马尔可夫链,则有以下关系成立:等号成立的条件是对于任意的 ,有 数据处理定理再一次说明,在任何信息传输系统中,最后获得的信息至多是信源
20、所提供的信息,如果一旦在某一过程中丢失一些信息,以后的系统不管如何处理,如不触及丢失信息的输入端,就不能再恢复已丢失的信息,这就是信息不增性原理,它与热熵不减原理正好对应,反映了信息的物理意义。BUPT Press第三章第三章 信源及信息熵信源及信息熵 3.1 信源的分类及其数学模型信源的分类及其数学模型3.2 离散单符号信源离散单符号信源 3.3 离散多符号信源离散多符号信源*3.4连续信源连续信源 BUPT Press 信源信源(InformationSource)是信息的来源,是产生消息(符号)、时间离散的消息序列(符号序列)以及时间连续的消息的来源。信源输出的消息都是随机的,因此可用概
21、率来描述其统计特性。在信息论中,用随机变量X、随机矢量X、随机过程分别表示产生消息、消息序列以及时间连续消息的信源。信源的主要问题:1如何描述信源(信源的数学建模问题)2怎样计算信源所含的信息量 3怎样有效的表示信源输出的消息,也就是信源编码问题 BUPT Press3.1 信源的分类及其数学模型信源的分类及其数学模型 信源的分类由多种方法,我们常根据信源输出的消息在时间和取值上是离散或连续进行分类:时间(空间时间(空间)取值取值信源种类信源种类举例举例数学描述数学描述离散离散离散信源(数字信源)文字、数据、离散化图象 离散随机变量序列 离散连续连续信号跳远比赛的结果、语音信号抽样以后 连续随
22、机变量序列 连续连续波形信源(模拟信源)语音、音乐、热噪声、图形、图象 随机过程 连续离散不常见表表3.1 信源的分类信源的分类 BUPT Press 我们还可以根据各维随机变量的概率分布是否随时间的推移而变化将信源分为平稳信源平稳信源和非平稳信源非平稳信源,根据随机变量间是否统计独立将信源分为有记忆信源有记忆信源和无记忆信源无记忆信源。一个实际信源的统计特性往往是相当复杂的,要想找到精确的数学模型很困难。实际应用时常常用一些可以处理的数学模型来近似。随机序列,特别是离散平稳随机序列是我们研究的主要内容。随机序列 BUPT Press3.2 离散单符号信源离散单符号信源 输出单个离散取值的符号
23、的信源称为离散单符号信源离散单符号信源。它是最简单也是最基本的信源,是组成实际信源的基本单元。它用一个离散随机变量表示。信源所有可能输出的消息和消息对应的概率共同组成的二元序对 称为信源的概率空间概率空间:信源输出的所有消息的自信息的统计平均值定义为信源的平均自平均自信息量(信息熵)信息量(信息熵),它表示离散单符号信源的平均不确定性:BUPT Press3.3 离散多符号信源离散多符号信源 定义定义3.1:对于随机变量序列 ,在任意两个不同时刻 和 (和 为大于1的任意整数)信源发出消息的概率分布完全相同,即对于任意的 ,和 具有相同的概率分布。也就是 即各维联合概率分布均与时间起点无关的信
24、源称为离散平稳信源离散平稳信源。BUPT Press 对于离散多符号信源,我们引入熵率熵率的概念,它表示信源输出的符号序列中,平均每个符号所携带的信息量。定义定义3.2 随机变量序列中,对前N个随机变量的联合熵求平均:称为平均符号熵平均符号熵。如果当 时上式极限存在,则 称为熵率熵率,或称为极限熵极限熵,记为 BUPT Press 离散平稳无记忆信源离散平稳无记忆信源 离散平稳无记忆信源输出的符号序列是平稳随机序列,并且符号之间是无关的,即是统计独立的。假定信源每次输出的是N长符号 序 列,则 它 的 数 学 模 型 是 N维 离 散 随 机 变 量 序 列:,并且每个随机变量之间统计独立。同
25、时,由于是平稳信源,每个随机变量的统计特性都相同,我们还可以把一个输出N长符号序列的信源记为:根据统计独立的多维随机变量的联合熵与信息熵之间的关系,可以推出:离散平稳无记忆信源的熵率:BUPT Press3.3.2 离散平稳有记忆信源离散平稳有记忆信源 实际信源往往是有记忆信源。对于相互间有依赖关系的N维随机变量的联合熵存在以下关系(熵函数的熵函数的链规则链规则):定理定理3.1 对于离散平稳信源,有以下几个结论:(1)条件熵 随N的增加是递减的;(2)N给定时平均符号熵大于等于条件熵,即(3)平均符号熵随N的增加是递减的;(4)如果 ,则存在,并且 BUPT Press 有一类信源,信源在某
26、时刻发出的符号仅与在此之前发出的有限个符号有关,而与更早些时候发出的符号无关,这称为马尔可夫马尔可夫性性,这类信源称为马尔可夫信源马尔可夫信源。马尔可夫信源可以在N不很大时得到 。如果信源在某时刻发出的符号仅与在此之前发出的 m个符号有关,则称为m阶马尔可夫信源,它的熵率:(马尔可夫性)(平稳性)通常记作 BUPT Press 马尔可夫信源马尔可夫信源 马尔可夫信源马尔可夫信源是一类相对简单的有记 忆信源,信源在某一时刻发出某一符号 的概率除与该符号有关外,只与此前发 出的有限个符号有关。因此我们把前面 若干个符号看作一个状态,可以认为信 源在某一时刻发出某一符号的概率除了 与该符号有关外,只
27、与该时刻信源所处 的状态有关,而与过去的状态无关。信 源发出一个符号后,信源所处的状态即 发生改变,这些状态的变化组成了马氏 链。图3.1 马尔可夫信源 BUPT Press 对于一般的 阶马尔可夫信源,它的概率空间可以表示成:令 ,从而得到马尔 可夫信源的状态空间:状态空间由所有状态及状态间的状态转移概率组成。通过引入状态转移概率,可以将对马尔可夫信源的研究转化为对马尔可夫链的研究。BUPT Press 下面计算遍历的m阶马尔可夫信源的熵率。当时间足够长后,遍历的马尔可夫信源可以视作平稳信源来处理,又因为m阶马尔可夫信源发出的符号只与最近的m个符号有关,所以极限熵 等于条件熵 。对于齐次遍历
28、的马尔可夫链,其状态 由 唯一确定,因此有 所以 BUPT Press 信源的相关性和剩余度信源的相关性和剩余度 根据定理3.1可得 由此看出,由于信源输出符号间的依赖关系也就是信源的相关性使信源的实际熵减小。信源输出符号间统计约束关系越长,信源的实际熵越小。当信源输出符号间彼此不存在依赖关系且为等概率分布时,信源的实际熵等于最大熵 。定义定义3.3 一个信源的熵率(极限熵)与具有相同符号集的最大熵的比值称为熵的相对率熵的相对率:信源剩余度信源剩余度为:BUPT Press 信源的剩余度来自两个方面,一是信源符号间的相关性,相关程度越大,符号间的依赖关系越长,信源的实际熵越小,另一方面是信源符
29、号分布的不均匀性使信源的实际熵越小。为了更经济有效的传送信息,需要尽量压缩信源的剩余度,压缩剩余度的方法就是尽量减小符号间的相关性,并且尽可能的使信源符号等概率分布。从提高信息传输效率的观点出发,人们总是希望尽量去掉剩余度。但是从提高抗干扰能力角度来看,却希望增加或保留信源的剩余度,因为剩余度大的消息抗干扰能力强。信源编码是减少或消除信源的剩余度以提高信息的传输效率,而信道编码则通过增加冗余度来提高信息传输的抗干扰能力。BUPT Press*3.4 连续连续信源信源 3.4.1 连续信源的微分熵连续信源的微分熵 连续随机变量的取值是连续的,一般用概率密度函数来描述其统计特征。单变量连续信源的数
30、学模型为 ,并满足 ,是实数域,表示 的取值范围。对于取值范围有限的连续信源还可以表示成:,并满足 ,(a,b)是 的取值范围。通过对连续变量的取值进行量化分层,可以将连续随机变量用离散随机变量来逼近。量化间隔越小,离散随机变量与连续随机变量越接近。当量化间隔趋于0时,离散随机变量就变成了连续随机变量。通过这种方式,我们来推导连续随机变量的熵。BUPT Press 定义连续信源的微分熵微分熵为:微分熵又称为差熵差熵。虽然已不能代表连续信源的平均不确定性,也不能代表连续信源输出的信息量,但是它具有和离散熵相同的形式,也满足离散熵的主要特性,比如可加性,但是不具有非负性。同样,我们可以定义两个连续
31、随机变量的联合熵联合熵:以及条件熵条件熵 BUPT Press 连续信源的最大熵连续信源的最大熵 离散信源当信源符号为等概分布时有最大熵。连续信源微分熵也有极大值,但是与约束条件有关,当约束条件不同时,信源的最大熵不同。我们一般关心的是下面两种约束下的最大熵。定理定理3.1 在输出幅度受限的情况,服从均匀分布的随机变量X具有最大输出熵。定理定理3.2 对于平均功率受限的连续随机变量,当服从高斯分布时具有最大熵。(对于均值为m,方差为 的连续随机变量,平均功率p=直流功率+交流功率=)BUPT Press 连续信源的熵功率连续信源的熵功率 均值为零,平均功率限定为p的连续信源当服从高斯分布时达到
32、最大熵:也就是说高斯信源的熵值与p有确定的对应关系:现在假定限定的平均功率为p,某连续信源的熵为h(X),则与它具有相同熵的高斯信源的平均功率 定义为熵功率熵功率即 所以,当该连续信源为高斯信源时等号成立。的大小可以表示连续信源剩余的大小。如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。所以信源平均功率和熵功率之差 称为连续信源的剩余度剩余度。BUPT Press第四章第四章 信道及其信道容量信道及其信道容量 4.1信道的分类信道的分类 4.2 离散单符号信道及其信道容量离散单符号信道及其信道容量 4.3 离散多符号信道及其信道容量离散多符号信
33、道及其信道容量 4.4 组合信道及其信道容量组合信道及其信道容量 *4.5 连续信道及其信道容量连续信道及其信道容量 *4.6 波形信道及其信道容量波形信道及其信道容量 BUPT Press信信道道是指信息传输的通道,包括空空间间传传输输和时时间间传传输输。我们在实际通信中所利用的各种物理通道是空间传输信道的最典型的例子,时间传输是指将信息保存,在以后读取,如磁带、光盘等在时间上将信息进行传输的信道。有时我们把为了某种目的而使信息不得不经过的通道也看作信道,这里最关键的是信道有一个输入以及一个与输入有关的输出。至于信道本身的物理结构可能是千差万别的,信息论研究的信道其输入点和输出点在一个实际物
34、理通道中所处位置的选择完全取决于研究的目的。关于信道的主要问题有:1.信道的建模(信道的统计特性的描述)2.信道容量的计算 3.在有噪信道中能不能实现可靠传输?怎样实现可靠传输?BUPT Press4.1 信道的分类信道的分类 信息论不研究信号在信道中传输的物理过程,它假定信道的传输特性是已知的,这样信道就可以用图4.1所示的抽象的数学模型来描述。在信息论中,信道通常表示成:,即信道输入随机变量X、输出随机变量Y以及在输入已知的情况下,输出的条件概率分布 。根据实际应用的需要,信道有几种分类方法:(1)按其输入/输出信号在幅度和时间 上的取值是离散或连续来划分 如表4.1所示:图4.1 信道模
35、型 BUPT Press 表表4.1 按其输入按其输入/输出信号在幅度和时间上的取值是离散或连续来划分输出信号在幅度和时间上的取值是离散或连续来划分 (2)按其输入/输出信号之间关系的记忆特性分为有记忆信道有记忆信道和 无记忆信道无记忆信道。(3)按输入/输出信号之间的关系是否确定关系分为有噪声信道有噪声信道 和无噪声信道无噪声信道。幅度幅度时间时间信道名称信道名称离散离散离散信道(数字信道)连续离散连续信道连续连续模拟信道(波形信道)离散连续(理论和实用价值均很小)BUPT Press(4)另外,根据信道输入和输出的个数可分为 两端信道两端信道(单用户信道单用户信道):只有一个输入端和一个输
36、出端的单向通信的信道。多端信道多端信道(多用户信道多用户信道):双向通信或三个或更多个用户之间相互通信的情况。本课程主要研究两端信道的情况。(5)根据信道的统计特性是否随时间变化分为:恒参信道恒参信道(平稳信道平稳信道):信道的统计特性不随时间变化。卫星通信信道在某种意义下可以近似为恒参信道。随参信道随参信道(非平稳信道非平稳信道):信道的统计特性随时间变化。如短波通信中,其信道可看成随参信道。本课程主要研究恒参信道的情况。BUPT Press4.2 离散单符号信道及其信道容量离散单符号信道及其信道容量 4.2.1 离散单符号信道的数学模型离散单符号信道的数学模型 信道的输入、输出都取值于离散
37、符号集,且都用一个随机变量来表示的信道就是离散单符号信道离散单符号信道。设离散单符号信道的输入随机变量为 ,输出随机变量为 ,由于信道中存在干扰,因此输入符号在传输中将会产生错误,这种信道干扰对传输的影响可用传递概率 来描述:信道传递概率实际上是一个传递概率矩阵,称为信道矩阵信道矩阵,记为:BUPT Press为了表述简便,常常写成 BUPT Press 下面推导一般离散单符号信道的一些概率关系:(1)输入输出随机变量的联合概率分布为 则有其中是信道传递概率,即输入为,通过信道传输输出的概率,通常称为前向概率前向概率。它是由于信道噪声引起的,所以通常用它描述信道噪声的特性。而是已知信道输出符号
38、,输入符号为 的概率,称为后向概率后向概率。有时把称为输入符号的先验概率先验概率。而对应的把称为输入符号的后验概率后验概率。BUPT Press (2)由全概率公式,可从先验概率和信道传递概率求输出符号的 概率:写成向量的形式:或记成 (3)根据贝叶斯公式,可由先验概率和信道的传递概率求后向 概率:BUPT Press 信道容量的概念信道容量的概念 平平均均互互信信息息是接收到输出符号集后所获得的关于输入符号集的信息量。信源的不确定性为,由于干扰的存在,接收端收到后对信源仍然存在的不确定性为,又称为信信道道疑疑义义度度。信宿所消除的关于信源的不确定性,也就是获得的关于信源的信息为,它是平均意义
39、上每传送一个符号流经信道的信息量,从这个意义上来说,平均互信息又称为信道的信信息息传传输率输率,通常用表示。即 有时我们所关心的是信道在单位时间内平均传输的信息量。如果平均传输一个符号为t秒,则信道平均每秒钟传输的信息量为 一般称为信息传输速率信息传输速率。比特/符号比特/秒 BUPT Press 对于固定的信道,总存在一种信源(某种输入概率分布),使信道平均传输一个符号接收端获得的信息量最大,也就是说对于每个固定信道都有一个最大的信息传输率,这个最大的信息传输率即为信道容量信道容量,而相应的输入概率分布称为最佳输入分布最佳输入分布。定义定义4.1 信道容量为平均互信息对于输入概率分布的最大值
40、:单位依所用的对数底不同可以是比特/符号、奈特/符号等。若平均传输一个符号需要t t秒钟,则信道在单位时间内平均传输的最大信息量 信道容量是信道传送信息的最大能力的度量,信道实际传送的信息量必然不大于信道容量。BUPT Press 图4.3 表示不同的二元对称信 道,其传递概率p不同,信道 容量也不同。当p=1/2时,是一种最坏的信 道,这时C=0,即该信道不能 传递任何信息,信息全部损失 在信道中了。而当p=0 或p=1 时,C=1,这是最好的情况,信道能够无失真的传送信源信 息。图4.3 BSC的信道容量 BUPT Press 几种几种特殊信道特殊信道的信道容量的信道容量1.具有扩展性能的
41、无损信道具有扩展性能的无损信道 无损信道是一个输入对应多个输出。如图4.4所示,信道矩阵为 无损信道信道矩阵中每一列只有一个非 零元素,接收到信道输出符号后对输入 符号将不存在不确定性。图4.4 无损信道 BUPT Press2.具有归并性能的无噪信道具有归并性能的无噪信道 无噪信道是一个输出对应多个输入。如图4.5所示,信道矩阵为 无噪信道每一行只有一个非零元素1,信道矩阵元素非零即1。已知信道输 入符号,必能确定输出符号。图4.5 无噪信道 BUPT Press 3.具有一一对应关系的无噪无损信道具有一一对应关系的无噪无损信道 无噪无损信道输入、输出之间有确定的一一对应关系,即 。信道传递
42、概率为 如图4.6所示,信道矩阵为 无噪无损信道每一行、每一列只有一个 “1”,已知 X后对Y不存在不确定性,收 到 Y后对X也不存在不确定性。图4.6 无噪无损信道 BUPT Press 离散对称信道的信道容量离散对称信道的信道容量离散信道中有一类特殊的信道,其特点是信道矩阵具有行对称性,利用这个对称性我们可以简化信道容量的计算。定义定义4.2 若信道矩阵中,每行都是第一行元素的不同排列,则称此类信道为行对称信道行对称信道。定义定义4.3 若信道矩阵中,不仅每行都是第一行元素的不同排列,而且每列都是第一列元素的不同排列,这类信道称为对称信道对称信道。定义定义4.4 若信道矩阵中,每行都是第一
43、行元素的不同排列,每列并不都是第一列元素的不同排列,但是可以按照信道矩阵的列将信道矩阵划分成若干对称的子矩阵,则称这类信道为准对称信准对称信道道。BUPT Press 定义定义4.5 若对称信道中输入符号和输出符号个数相同,且信道中总的错误概率为p,对称地平均分配给r-1个输出符号,r为输入输出符号的个数,即信道矩阵为 则称此信道为强对称信道强对称信道或均匀信道均匀信道。BUPT Press二元对称信道就是r=2的均匀信道。一般信道的信道矩阵中各行之和为1,但各列之和不一定等于1,而均匀信道中各列之和亦等于1。定定理理4.1 对于对称信道,当输入分布为等概分布时,输出分布必能达到等概分布。定定
44、理理4.2 若一个离散对称信道具有r个输入符号,s个输出符号,则当输入为等概分布时达到信道容量,且 其中 为信道矩阵中的任一行。推论:推论:均匀信道的信道容量为 BUPT Press当输入为等概分布时,输出为等概分布,信道达到信道容量。当r=2 时的均匀信道常称为二元对称信道二元对称信道,这时C=1H(p)。对于一般的离散行对称信道,信道容量C仍然可以写成:但是不一定存在一种输入分布能使输出达到等概分布,此时的信道容量。而离散对称信道的信道矩阵中每一列都是由同一组元素的不同排列组成,所以保证了当输入符号X为等概分布时,输出符号Y一定也是等概分布,输出随机变量熵可以达到。对于离散准对称信道,但是
45、可以证明当输入为等概分布时,可以达到信道容量 BUPT Press 一般离散信道的信道容量一般离散信道的信道容量 平均互信息是输入概率分布p(x)的上凸函数,因此极大值必定存在。在信道固定的条件下,平均互信息是r个变量 的多元函数,且满足约束条件 ,故可用拉格朗日乘子法来求这个条件极值。即在 设辅助函数:,当 时求得的 的值即为信道容量。通过计算可得平均互信息的极大值 ,即的条件下求 的极值。BUPT Press 这样得到的信道容量有一个参数 。在某些情况下可以消去 得到信道容量值。1当输入概率分布只有一个变量时,例如r=2,可以设输入概率分布为 和 ,因此输入概率分布只有一个变量,这时我们可
46、以直接对 求导求出,从而得出 的极大值C。2对于信道矩阵为可逆矩阵的信道,我们可以采用解方程组的方法。在一般信道的信道容量的推导中我们推出了下式:BUPT Press 移项得 当r=s,且信道矩阵是可逆矩阵时,该方程组有唯一解。这时就可以求出 ,然后根据 求出信道容量:令则所以 BUPT Press由 和C就可以求得输出概率分布(1)由 列方程组求出;(2)由 求出C;(3)由 求出;(4)由 列方程组求 。再根据列方程组求将计算步骤总结如下:BUPT Press 信道容量定理信道容量定理 从以上的讨论可知,求信道容量的问题实际上是在约束条件下求多元函数极值的问题,在通常情况下,计算量是非常大
47、的。下面我们介绍一般离散信道的平均互信息 达到信道容量的充要条件,在某些情况下它可以帮助我们较快地找到极值点。定定理理4.3 设有一般离散信道,它有r个输入信号,s个输出信号。当且仅当存在常数C使输入分布 满足:(1)当 (2)当 其中,它表示信道输入 时,所给出关于输出Y的信息量。常数C即为所求的信道容量。时,达到最大值。BUPT Press 信道容量定理信道容量定理告诉我们,平均互信息 取到极大值也就是信道容量时,对于任意 ,只要它出现的概率大于0,都相等。信道容量定理只给出了达到信道容量时,最佳输入概率分布应满足的条件,并没有给出最佳输入概率分布值,也没有给出信道容量的数值。另外,定理本
48、身也隐含着达到信道容量的最佳分布不一定是唯一的,只要输入概率分布满足充要条件式,就是信道的最佳输入分布。在一些特殊情况下,我们常常利用这一定理寻求输入分布和信道容量值。BUPT Press4.3 离散多符号信道及其信道容量离散多符号信道及其信道容量 实际离散信道的输入和输出常常是随机变量序列,用随机矢量来表示,称为离散多符号信道,离散多符号信道,如图4.8所示。实际离散信道往往是有记忆信道,为了简化起见,我们主要研究离散无记忆信道。定定义义4.6 若在任意时刻信道的输出只与此时刻信道的输入有关,而与其他时刻的输入和输出无关,则称之为离离散散无无记记忆忆信信道道,简称为DMC(discretem
49、emorylesschannel)。输入、输出随机序列的长度为N的离 散无记忆平稳信道通常称为离散无记 忆信道的N次扩展信道。N次扩展信道的信道矩阵是一个 的矩阵。图4.8 离散多符号信道 BUPT Press 离散无记忆信道的数学模型仍然表示为:,注意这时输入、输出均为随机矢量。根据信道无记忆的特性,其转移概率 定理定理4.4 若信道的输入和输出分别是N长序列X和Y,且信道是无记忆的,则存在 这里Xk、Yk分别是序列X和Y中第k位随机变量。BUPT Press 对于离散无记忆N次扩展信道,当信源是平稳无记忆信源时,其平均互信息 等于单符号信道的平均互信息的N倍。离散无记忆信道的N次扩展信道的
50、信道容量为 因为现在输入随机序列在同一信道中传输,所以任何时刻通过离散无记忆信道传输的最大信息量都相同,即 所以 当信源也是无记忆信源并且每一时刻的输入分布各自达到最佳输入分布时,才能达到这个信道容量NC。一般情况下,消息序列在离散无记忆N次扩展信道中传输时,其平均互信息量 BUPT Press4.4 组组合信道及其信道容量合信道及其信道容量 前面我们分析了单符号离散信道和离散无记忆信道的扩展信道。实际应用中常常会遇到两个或更多个信道组合在一起使用的情况。例如,待发送的消息比较多时,可能要用两个或更多个信道并行发送,这种组合信道称为并并联联信信道道;有时消息会依次地通过几个信道串联发送,例如无