《90题突破高中数学圆锥曲线(二)(共9页).doc》由会员分享,可在线阅读,更多相关《90题突破高中数学圆锥曲线(二)(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上90题突破高中数学圆锥曲线(二)31.直线AB过抛物线 的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点O是坐标原点 (I)求 的取值范围; ()过 A、B两点分剐作此撒物线的切线,两切线相交于N点求证: ; () 若P是不为1的正整数,当 ,ABN的面积的取值范围为 时,求该抛物线的方程32.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.()当时,求椭圆的方程及其右准线的方程;()在()的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说
2、明理由;()是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由33.已知点和动点满足:,且存在正常数,使得。(1)求动点P的轨迹C的方程。(2)设直线与曲线C相交于两点E,F,且与y轴的交点为D。若求的值。34.已知椭圆的右准线与轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.(I)求椭圆的方程;()是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.35.已知椭圆C:(.(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范
3、围;(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.36.已知若过定点、以()为法向量的直线与过点以为法向量的直线相交于动点(1)求直线和的方程;(2)求直线和的斜率之积的值,并证明必存在两个定点使得恒为定值;(3)在(2)的条件下,若是上的两个动点,且,试问当取最小值时,向量与是否平行,并说明理由。37.已知点,点(其中),直线、都是圆的切线()若面积等于6,求过点的抛物线的方程;()若点在轴右边,求面积的最小值38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学
4、们进行研究并完成下面问题。(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。39.已知点为抛物线的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点()求直线的方程;()求的面积范围;()设,求证为定值40.
5、已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(I)求椭圆的方程;(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;(III)设与轴交于点,不同的两点在上,且满足求的取值范围.41.已知以向量为方向向量的直线过点,抛物线:的顶点关于直线的对称点在该抛物线的准线上(1)求抛物线的方程;(2)设、是抛物线上的两个动点,过作平行于轴的直线,直线与直线交于点,若(为坐标原点,、异于点),试求点的轨迹方程。42.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.(
6、)当时,求椭圆的方程及其右准线的方程;()在()的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;()是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由43.设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.()求椭圆C的方程;()是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.()若AB是椭圆C经过原点O的弦, MNAB,求证:为定值44.设是抛物线的焦点,过点M(1,0)且以为方向向量的直线顺次交抛物线于两点。()当时,若与的夹角
7、为,求抛物线的方程;()若点满足,证明为定值,并求此时的面积45.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.()当点在轴上移动时,求点的轨迹的方程;()设、为轨迹上两点,且1, 0,,求实数,使,且.46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。(1)已知椭圆的离心率;(2)若的最大值为49,求椭圆C的方程.47.已知直线与曲线:交于两点,的中点为,若直线和(为坐标原点)的斜率都存在,则.这个性质称为有心圆锥曲线的“垂径定理”.()证明有心圆锥曲线的“垂径定理”;()利用有心圆锥曲线的“垂径定理”解答
8、下列问题:过点作直线与椭圆交于两点,求的中点的轨迹的方程;过点作直线与有心圆锥曲线交于两点,是否存在这样的直线使点为线段的中点?若存在,求直线的方程;若不存在,说明理由.48.椭圆的中心为原点,焦点在轴上,离心率,过的直线与椭圆交于、两点,且,求面积的最大值及取得最大值时椭圆的方程49.椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且学科网(1)求椭圆方程; (2)若,求m的取值范围学科网50.已知点A是抛物线y22px(p0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知AKAF
9、,三角形AFK的面积等于8(1)求p的值;(2)过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求GH的最小值51.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.()当点在轴上移动时,求点的轨迹的方程;()设、为轨迹上两点,且1, 0,,求实数,使,且.52.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m0),L交椭圆于A、B两个不同点。(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA、MB与x轴始终围成一个等腰三角形。53.已知椭圆上的点到右焦点
10、F的最小距离是,到上顶点的距离为,点是线段上的一个动点.(I)求椭圆的方程;()是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.54.已知椭圆的上、下焦点分别为,点为坐标平面内的动点,满足(1)求动点的轨迹的方程;(2)过点作曲线的两条切线,切点分别为,求直线的方程:(3)在直线上否存在点,过该点作曲线的两条切线,切点分别为,使得,若存在,求出该点的坐标;若不存在,试说明理由。55.已知抛物线的焦点为是抛物线上的两动点,且过两点分别作抛物线的切线,设其交点为(1)证明线段被轴平分 (2)计算的值(3)求证56.已知是椭圆的顶点(如图),直线与椭圆交于异于顶点的两点,且若椭圆的
11、离心率是,且()求此椭圆的方程;()设直线和直线的倾斜角分别为试判断是否为定值?若是,求出此定值;若不是,说明理由 ABOMNQF57.已知椭圆中心在坐标原点,焦点在坐标轴上,且经过、三点过椭圆的右焦点F任做一与坐标轴不平行的直线与椭圆交于、两点,与所在的直线交于点Q.(1)求椭圆的方程:(2)是否存在这样直线,使得点Q恒在直线上移动?若存在,求出直线方程,若不存在,请说明理由.58.已知方向向量为的直线过点和椭圆的右焦点,且椭圆的离心率为(I)求椭圆的方程;(II)若已知点,点是椭圆上不重合的两点,且,求实数的取值范围59.已知F1,F2是椭圆C: (ab0)的左、右焦点,点P在椭圆上,线段PF2与y轴的交点M满足。(1)求椭圆C的方程。(2)椭圆C上任一动点M关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围。60.已知均在椭圆上,直线、分别过椭圆的左右焦点、,当时,有.()求椭圆的方程;()设是椭圆上的任一点,为圆的任一条直径,求的最大值.专心-专注-专业