初中数学论文.doc

上传人:asd****56 文档编号:62339942 上传时间:2022-11-22 格式:DOC 页数:4 大小:32.50KB
返回 下载 相关 举报
初中数学论文.doc_第1页
第1页 / 共4页
初中数学论文.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《初中数学论文.doc》由会员分享,可在线阅读,更多相关《初中数学论文.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习题。练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,培养能力。在教学过程中,除注意增加变式题、综合题外,适当设计一些开放型习题,可以培养学生思维的深刻性 和灵活性,克服学生思维的呆板性。 一、运用不定型开放题,培养学生思维的深刻性 不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后

2、,问学生:ba是真分数,还是假分数?因a、b都不是确定的数,所以无法确定ba是真分数还是假分数。在学生经过紧张的思考和激烈的争论后得出这样的结论:当ba时,ba为真分数;当ba时, ba是假分数。这时教师进一步问:a、b可以是任意数吗? 这样不仅使学生对真假分数的意义有了更深刻的理解,而且使学生的逻辑思维能力得到了提高。 又如,学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去910,第二根截去910米,哪一根绳子剩下的部分长

3、?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:当绳子的长度是1米时,第一根的910等于910米,所以两根绳子剩下的部分一样长;当绳子的长度大于1米时,第一根绳子的 910大于910米,所以第二根绳子剩下的长;当绳子的长度小于1米时,第一根绳子的910小于910 米 ,由于

4、绳子的长度小于910米时,就无法从第二根绳子上截去910米,所以当绳子的长度小于1米而大于9 10米时,第一根绳子剩下的部分长。 这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高了全面分析、解决问题的能力。 二、运用多向型开放题,培养学生思维的广阔性 多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。 如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队每天修多

5、少米? 这道题从不同的角度思考,得出了不同的解法: 1、先求出乙队20天修的,根据全长和乙队20 天修的可以求出甲队20天修的,然后求甲队每天修的。 算式是(15003520)20 2、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队 每天修的。 算式是:(3520100)20 3、可以先求出两队平均每天共修多少米, 再求甲队每天修多少米。 算式是:15002035 4、可以先求出甲队每天比乙队多修多少米, 再求甲队每天修多少米。 算式是:1002035 5、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,然后求两队每天修的,

6、再求甲队每 天修的。 算式是:(1500100)202 6、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,然后求甲队20天修的,再求甲队每 天修的。 算式是:(1500100)220 7、假设乙队和甲队修的同样多,那么两队20天共修(1500100)米,也就是甲队(202)天修的,由此 可以求出甲队每天修的。 算式是:(1500100)(202) 然后引导学生比较哪种方法最简便,哪种思路最简捷。这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不 同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性

7、。三、运用多余型开放题,培养学生思维品质的批判性 多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析 条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养 学生思维的批判性。 如:一根绳子长25米,第一次用去8米,第二次用去12米, 这根绳子比原来短了多少米? 由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目 进行认真分析,错误地列式为:25812或25(812)。 做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多 少米,

8、这里25米是与解决问题无关的条件,正确的列式是:812。通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非 、去伪存真的鉴别能力。 四、运用隐藏型开放题,培养学生思维的缜密性 隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及 明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性 。 如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米? 解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:85,正确列式应为:8 52。 解此类题时要引导学生认

9、真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生 思维的缜密性。 五、运用缺少型开放题,培养学生思维的灵活性 缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米? 按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)24r212,r23,所以圆的面积是3.1439.42(平方厘米)。 还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r, 那么每个小正方形的面积为r2,原正方形的面积为4r2,r2124,所剪圆的面积是3.14(12 4)9.42(平方厘米)。通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问 题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁