《国家开放大学电大本科《常微分方程》网络课形考任务3试题及答案.docx》由会员分享,可在线阅读,更多相关《国家开放大学电大本科《常微分方程》网络课形考任务3试题及答案.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、国家开放大学电大本科常微分方程网络课形考任务3试题及答案国家开放高校电大本科常微分方程网络课形考任务3试题及答案 形考任务3 常微分方程学习活动3 第一章 初等积分法的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、其次章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出驾驭的薄弱学问点,重点复习,争取尽快驾驭 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行
2、评分。一、填空题 1微分方程是 二 阶微分方程 2初值问题的解所满意的积分方程是 3微分方程是 一阶线性非齐次微分方程 (就方程可积类型而言) 4微分方程是 全微分方程 (就方程可积类型而言) 5微分方程是 恰当倒数方程 (就方程可积类型而言) 6微分方程的全部常数解是 7微分方程的常数解是 8微分方程的通解为 9微分方程的通解是. 10一阶微分方程的一个特解的图像是二 维空间上的一条曲线 二、计算题 1指出下列方程的阶数,是否是线性方程: (1) 答:一阶,非线性 (2) 答:四阶,线性 (3) 答:三阶,非线性 2用分别变量法求解下列方程: (1) (2) (3) 2(1)解 通积分为 (
3、2)解 当时,分别变量,两端取积分得 即 通积分为 另外,是常数解, 注: 在方程求解时,求出显式通解或隐式通解(通积分)即可,常数解可以不求。(3)解 当时, 方程可变为 , 通积分为 或 , 上式代入初值条件. 得. 于是初值问题解为 . 3解下列齐次线性微分方程 (1) (2) (1)解 明显是方程的解. 当时, 原方程可化为 . 令, 则原方程可化为 , 即 易于看出, 是上面方程的解, 从而 是原方程的解. 当时, 分别变量得, . 两端积分得(C) 将换成, 便得到原方程的解 , (C). 故原方程的通解为(为随意常数)及 . (2)解 明显是方程的解. 当时, 原方程可化为 .
4、令, 则原方程可化为 , 即 易于看出, 是上式的解, 从而是原方程的解. 当时, 分别变量得, . 两端积分得 (C). 将换成, 便得到原方程的解 (C). 故原方程的通解为 . 4解下列一阶线性微分方程: (1) (2) (1)解 先解齐次方程 . 其通解为 . 用常数变易法, 令非齐次方程通解为 . 代入原方程, 化简后可得. 积分得到 . 代回后即得原方程通解为 . (2)解 先解齐次方程 . 其通解为 . 用常数变易法, 令非齐次方程通解为 . 代入原方程, 化简后可得 . 积分得到 . 代回后即得原方程通解为 . 5解下列伯努利方程 (1) (2) (1)解 明显是方程解. 当时
5、, 两端同除, 得 . 令, 代入有 它的解为 于是原方程的解为,及 (2)解 明显是方程解. 当时, 两端同除, 得 . 令, 代入有 它的解为 , 于是原方程的解, 及 6解下列全微分方程: (1) (2) (1)解 因为 , 所以这方程是全微分方程, 及 在整个平面都连续可微, 不妨选取. 故方程的通积分为 , 即 . (2)解 因为 , 所以这方程是全微分方程, 及 在整个平面都连续可微, 不妨选取. 故方程的通积分为 , 即 . 7求下列方程的积分因子和积分: (1) (2) (1)解 因为 , 与y无关, 故原方程存在只含x的积分因子. 由公式(1. 58)得积分因子,即 于是方程
6、 为全微分方程.取 . 于是方程的通积分为. 即 . (2)解 因为 , 与y无关, 故原方程存在只含x的积分因子. 解方程 由公式(1. 58)得积分因子,即 于是方程 为全微分方程. 取 . 于是通积分为. 即. 8求解下列一阶隐式微分方程 (1) (2) (1)解 将方程改写为 即或 解得通积分为:, 又是常数解. (2)解 明显是方程的解. 当时, 方程可变为 , 令, 则上面的式子可变为 . 解出u得, . 即 . 对上式两端积分得到方程的通解为 9求解下列方程 (1) (2) (1)解 令 , 则. 代入原式得. 解出得 . 这是克莱洛方程,通解为 . 即 . 解之得 (为随意常数
7、). (2)解 化简得 , 即 求积分得 . . 三、证明题 1设函数,在上连续,且, (a, b为常数)求证:方程 的一切解在上有界 2设在上连续,且,求证:方程 的一切解,均有 1证明 设y=y(x)是方程任一解,且满意y(x0)=y0, 则 由于,所以对随意0,存在x0,使得x时 有 令,则 于是得到 又在x0,x1上y(x)有界设为M2,现取 , 则 2证明 设是方程任一解,满意,该解的表达式为 取极限 = 四、应用题 1按牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比, 已知空气温度为, 而物体在15分钟内由 冷却到 , 求物体冷却到所需的时间. 2重为100kg的物体,在与水平面成30的斜面上由静止状态下滑,假如不计磨擦,试求: (1)物体运动的微分方程; (2)求5 s后物体下滑的距离,以及此时的速度和加速度 1 解 设物体在时刻t的温度为,由题意满意初值问题 其中为常数 解得 设物体冷却到40所需时间为,于是由得 解得 52分钟. 2解 取初始下滑点为原点,轴正向垂直向下,设 时刻速度为 , 距离为, 由题意满意初值问题 解得 再由解得 于是得到5秒后, , ,