初中数学《函数》教案.docx

上传人:l*** 文档编号:62171886 上传时间:2022-11-22 格式:DOCX 页数:10 大小:20.85KB
返回 下载 相关 举报
初中数学《函数》教案.docx_第1页
第1页 / 共10页
初中数学《函数》教案.docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《初中数学《函数》教案.docx》由会员分享,可在线阅读,更多相关《初中数学《函数》教案.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学函数教案初中数学函数学问点汇总 初中数学函数学问点汇总 2、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)k不为零x指数为1b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小(1)解析式:y=kx(k是常数,k0)(2)必过点:(0,0)、(1,k)(3)走向:k0时,图像经过一、三象限;k0时,图像经过二、四象限(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小(5)倾斜度:|k|

2、越大,越接近y轴;|k|越小,越接近x轴3、一次函数及性质一般地,形如y=kxb(k,b是常数,k0),那么y叫做x的一次函数.当b=0时,y=kxb即y=kx,所以说正比例函数是一种特别的一次函数.注:一次函数一般形式y=kxb(k不为零)k不为零x指数为1b取随意实数一次函数y=kxb的图象是经过(0,b)和(-k/b,0)两点的一条直线,我们称它为直线y=kxb,它可以看作由直线y=kx平移|b|个单位长度得到.(当b0时,向上平移;当b0时,向下平移)(1)解析式:y=kxb(k、b是常数,k0)(2)必过点:(0,b)和(-k/b,0)(3)走向:k0,图象经过第一、三象限;k0,图

3、象经过其次、四象限b0,图象经过第一、二象限;b0,图象经过第三、四象限 (4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b0时,将直线y=kx的图象向上平移b个单位;当b0时,将直线y=kx的图象向下平移b个单位.初中数学一次函数学问点汇总4、一次函数y=kxb的图象的画法.依据几何学问:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般状况下:是先选取它与两坐标轴的交点:(0,b),(-k/b,0).即横坐

4、标或纵坐标为0的点。初中数学一次函数学问点汇总5、正比例函数与一次函数之间的关系一次函数y=kxb的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b0时,向上平移;当b0时,向下平移)6、正比例函数和一次函数及性质 7、用待定系数法确定函数解析式的一般步骤:(1)依据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。 初中数学二次函数学问点 初中数学二次函数学问点 I.定义与定义表达式一般地,

5、自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a0,且a确定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以确定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式一般式:y=ax2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)2+k抛物线的顶点P(h,k)交点式:y=a(x-x)(x-x)仅限于与x轴有交点A(x,0)和B(x,0)的抛物线注:在3种形式的相互转化中,有如下关系:h=-b/2ak=(4ac-b2)/4ax,x=(-bb

6、2-4ac)/2a III.二次函数的图像在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b2)/4a)当-b/2a=0时,P在y轴上;当=b2-4ac=0时,P在x轴上。 3.二次项系数a确定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a

7、共同确定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右。 5.常数项c确定抛物线与y轴交点。抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数=b2-4ac0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb24ac的值的相反数,乘上虚数i,整个式子除以2a) V.二次函数与一元二次方程特殊地,二次函数(以下称函数)y=ax2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0 此时,函数图像与x轴有无交点即

8、方程有无实数根。函数与x轴交点的横坐标即为方程的根。 1二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a0)的图象形态相同,只是位置不同,它们的顶点坐标及对称轴如下表: 当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到 当h0时,则向左平行移动|h|个单位得到 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向

9、左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,探讨抛物线y=ax2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清晰了这给画图象供应了便利 2抛物线y=ax2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a) 3抛物线y=ax2+bx+c(a0),若a0,当x-b/2a时,y随x的增大

10、而减小;当x-b/2a时,y随x的增大而增大若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小 4抛物线y=ax2+bx+c的图象与坐标轴的交点:(1)图象与y轴肯定相交,交点坐标为(0,c);(2)当=b2-4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a0)的两根这两点间的距离AB=|x-x|当=0图象与x轴只有一个交点;当0图象与x轴没有交点当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0 5抛物线y=ax2+bx+c的最值:假如a0

11、(a0),则当x=-b/2a时,y最小(大)值=(4ac-b2)/4a顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值 6用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a0)(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a0)(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a0) 7二次函数学问很简单与其它学问综合应用,而形成较为困难的综合题目。因此,以二次函数学问为主的综合性题目是中考的

12、热点考题,往往以大题形式出现。 初中数学学问点总结:函数 初中数学学问点总结:函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。当B=0时,称Y是X的正比例函数。 一次函数的图象:把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,全部这些点组成的图形叫做该函数的图象。正比例函数Y=KX的图象是经过原点的一条直线。 在一次函数中,当K0,BO,则经234象限;

13、当K0,B0时,则经124象限;当K0,B0时,则经134象限;当K0,B0时,则经123象限。当K0时,Y的值随X值的增大而增大,当X0时,Y的值随X值的增大而削减。 二空间与图形 A、图形的相识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 绽开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的全部侧棱长相等,棱柱的上下底面的形态相同,侧面的形态都是长方体。N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:

14、他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的全部连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。 角的比较:角也可以看成是由一条射线围着他的端点旋转而成的。一条射线围着

15、他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边接着旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。假如两条直线都与第3条直线平行,那么这两条直线相互平行。 垂直:假如两条直线相交成直角,那么这两条直线相互垂直。相互垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与已知直线垂直。 垂直平分线:垂直和平分一条线段的直线叫垂直平分线。 垂直平分线垂直平分的肯定是线段,不能是射线或直线,这依据射线和直

16、线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)肯定要把线段穿出2点。 垂直平分线定理: 性质定理:在垂直平分线上的点到该线段两端点的距离相等; 判定定理:到线段2端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。 定义中有几个要点要留意一下的,就是角的角平分线是一条射线,不是线段也不是直线,许多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 正方形:一组邻边相等的矩形是正方形 性质:正方形具有平行四边形、菱形、矩形的一切性质 判定:1、对角线相等的菱形2、邻边相等的矩形 第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁