2017年全国高中数学联合竞赛试题与解答(B卷)(共19页).doc

上传人:飞****2 文档编号:6213286 上传时间:2022-01-31 格式:DOC 页数:19 大小:1.61MB
返回 下载 相关 举报
2017年全国高中数学联合竞赛试题与解答(B卷)(共19页).doc_第1页
第1页 / 共19页
2017年全国高中数学联合竞赛试题与解答(B卷)(共19页).doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2017年全国高中数学联合竞赛试题与解答(B卷)(共19页).doc》由会员分享,可在线阅读,更多相关《2017年全国高中数学联合竞赛试题与解答(B卷)(共19页).doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上2017年全国高中数学联合竞赛一试(B卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列中,则的值为 .2.设复数满足,则的值为 .3.设是定义在上的函数,若是奇函数,是偶函数,则的值为 .4.在中,若,且三条边成等比数列,则的值为 .5.在正四面体中,分别在棱上,满足,且与平面平行,则的面积为 .6.在平面直角坐标系中,点集,在中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设为非零实数,在平面直角坐标系中,二次曲线的焦距为4,则的值为 .8.若正整数满足,则数组的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字

2、说明、证明过程或演算步骤.) 9.设不等式对所有成立,求实数的取值范围.10.设数列是等差数列,数列满足,.(1)证明:数列也是等差数列;(2)设数列、的公差均是,并且存在正整数,使得是整数,求的最小值.11.在平面直角坐标系中,曲线,曲线,经过上一点作一条倾斜角为的直线,与交于两个不同的点,求的取值范围.2017年全国高中数学联合竞赛加试(B卷)一、(本题满分40分)设实数满足,令,证明:二、(本题满分40分)给定正整数,证明:存在正整数,使得可将正整数集分拆为个互不相交的子集,每个子集中均不存在4个数(可以相同),满足.三、(本题满分50分)如图,点是锐角的外接圆上弧的中点,直线与圆过点的

3、切线分别相交于点,与的交点为,与的交点为,与的交点为,求证:平分线段.四、(本题满分50分)设,集合,求的元素个数的最大值.一试试卷答案1.答案:解:数列的公比为,故.2.答案:解:设,由条件得,比较两边实虚部可得,解得:,故,进而.3.答案:解:由条件知,两式相加消去,可知:,即.4.答案:解:由正弦定理知,又,于是,从而由余弦定理得:.5.答案:解:由条件知,平行于,因为正四面体的各个面是全等的正三角形,故,.由余弦定理得,同理有.作等腰底边上的高,则,故,于是.6.答案:解:注意中共有9个点,故在中随机取出三个点的方式数为种,当取出的三点两两之间距离不超过2时,有如下三种情况:(1)三点

4、在一横线或一纵线上,有6种情况,(2)三点是边长为的等腰直角三角形的顶点,有种情况,(3)三点是边长为的等腰直角三角形的顶点,其中,直角顶点位于的有4个,直角顶点位于,的各有一个,共有8种情况.综上可知,选出三点两两之间距离不超过2的情况数为,进而所求概率为.7.答案:解:二次曲线方程可写成,显然必须,故二次曲线为双曲线,其标准方程为,则,注意到焦距,可知,又,所以.8.答案:574解:由条件知,当时,有,对于每个这样的正整数,由知,相应的的个数为,从而这样的正整数组的个数为,当时,由,知,进而,故,此时共有2组.综上所述,满足条件的正整数组的个数为.9.解:设,则,于是对所有成立,由于,对给

5、定实数,设,则是关于的一次函数或常值函数,注意,因此等价于,解得所以实数的取值范围是.10.解:(1)设等差数列的公差为,则所以数列也是等差数列.(2)由已知条件及(1)的结果知:,因为,故,这样若正整数满足,则.记,则,且是一个非零的整数,故,从而.又当时,有,综上所述,的最小值为.11.解:设,则直线的方程为,代入曲线的方程得,化简可得:,由于与交于两个不同的点,故关于的方程的判别式为正,计算得,因此有,设的横坐标分别为,由知,因此,结合的倾斜角为可知,由可知,故,从而由得:注1:利用的圆心到的距离小于的半径,列出不等式,同样可以求得中的范围.注2:更简便的计算的方式是利用圆幂定理,事实上

6、,的圆心为,半径为,故.加试试卷答案一、证明:当时,不等式显然成立以下设,不妨设不异号,即,那么有因此二、证明:取,令,设,则,故,而,所以在中不存在4个数,满足三、证明:首先证明,即证连接,因为,所以, 由题设,是圆的切线,所以,又(注意是弧的中点),于是由知 因为,所以,于是 而 由,得 ,即又,故设边的中点为,因为,所以由塞瓦定理知,三线共点,交点即为,故由可得平分线段四、解:考虑一组满足条件的正整数对,设中取值为的数有个,根据的定义,当时,因此至少有个不在中,注意到,则柯西不等式,我们有从而的元素个数不超过另一方面,取(),(),则对任意(),有等号成立当且仅当,这恰好发生次,此时的元素个数达到综上所述,的元素个数的最大值为160.专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁