《中小学数学公开课优质课件推选——《垂径定理》.ppt》由会员分享,可在线阅读,更多相关《中小学数学公开课优质课件推选——《垂径定理》.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、,垂径定理,执教教师:XXX,问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?,赵州桥主桥拱的半径是多少?,问题情境,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?,可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴,活动一,如图,AB是O的一条弦,做直径CD,使CDAB,垂足为E(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为
2、什么?,O,A,B,C,D,E,活 动 二,(1)是轴对称图形直径CD所在的直线是它的对称轴,(2) 线段: AE=BE,垂径定理:,垂直于弦的直径平分弦,且平分弦所对的两条弧.,符号语言,图形语言,(1)如何证明?,探究:,已知:如图,CD是O的直径,AB为弦,且AE=BE.,证明:连接OA,OB,则OA=OB, AE=BE, CDAB,垂径定理推论,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。, CDAB, CD是直径,,AE=BE,O,A,B,C,D,E,(2)“不是直径”这个条件能去掉吗?如果不能,请举出反例。,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。,
3、1如图,在O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求O的半径,O,A,B,E,练习,解:,答:O的半径为5cm.,在Rt AOE 中,2如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又AC=AB, AE=AD, 四边形ADOE为正方形.,课堂讨论,根据已知条件进行推导:过圆心垂直于弦 平分弦 平分弦所对优弧 平分弦所对劣弧,(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。,(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。,(2)平分弦所对的一条弧的直径,垂直平分弦,
4、并且平分 弦所对的另一条弧。,只要具备上述五个条件中任两个,就可以推出其余三个.,1.判断:,( )(1)垂直于弦的直线平分这条弦, 并且平分 弦所对的两条弧.,( )(2)平分弦所对的一条弧的直径一定平分 这条弦所对的另一条弧.,( )(3)经过弦的中点的直径一定垂直于弦.,( )(4)弦的垂直平分线一定平分这条弦所对的弧.,1.已知P为O内一点,且OP2cm,如果O的半径是3cm,那么过P点的最短的弦等于.,2.过O内一点M的最长弦长为4厘米,最短弦长为2厘米,则OM的长是多少?,O,M,A,2、如图,点P是半径为5cm的O内一点,且OP=3cm, 则过P点的弦中,(1)最长的弦= cm(
5、2)最短的弦= cm(3)弦的长度为整数的共有( ) A、2条 b、3条 C、4条 D、5条,巩固:,A,O,C,D,5,4,P,3,B,3、如图,点A、B是O上两点,AB=8,点P是O上的动点(P与A、B不重合),连接AP、BP,过点O分别作OEAP于E,OFBP于F,EF= 。,4,已知O的半径为5厘米,弦AB的长为8厘米,求此弦的中点到这条弦所对的弧的中点的距离。,E,E,D,D,练习,1.过o内一点M的最长的弦长为10,最短弦长为8,那么o的半径是,2.已知o的弦AB=6,直径CD=10,且ABCD,那么C到AB的距离等于,3.已知O的弦AB=4,圆心O到AB的中点C的距离为1,那么O
6、的半径为,4.如图,在O中弦ABAC,OMAB,ONAC,垂足分别为M,N,且OM=2,0N=3,则AB= ,AC= ,OA=,B,A,M,C,O,N,5,1或9,6,4,Cm,归纳: 已知:直径,弦长,弦心距,拱高四者知其二,即可根据勾股定理求出另外的两个量。,问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?,赵州桥主桥拱的半径是多少?,问题情境,解得:R279(m),解决求赵州桥拱半径的问题,在RtOAD中,由勾股定
7、理,得,即 R2=18.72+(R7.2)2,赵州桥的主桥拱半径约为27.9m.,OA2=AD2+OD2,实践应用,某圆直径是10,内有两条平行弦,长度分别为6和8求这两条平行弦间的距离.,船能过拱桥吗?,例3.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?,船能过拱桥吗,解:如图,用 表示桥拱, 所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.由题设得,在RtOAD中,由勾股定理,得,解得 R3.9(m).,在RtONH中,由勾股定理,得,此货船能顺利通过这座拱桥.,已知A、B、C是O上三点,且AB=AC,圆心O到BC的距离为3厘米,圆的半径为5厘米,求AB长。,D,D,谢谢观看,请指导,