《09.5.单摆(初中 物理教案)103440.pdf》由会员分享,可在线阅读,更多相关《09.5.单摆(初中 物理教案)103440.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!单摆 一、教学目标 1 在物理知识方面的要求:(1)理解单摆振动的特点及它做简谐运动的条件;(2)掌握单摆振动的周期公式。2 观察演示实验,概括出周期的影响因素,培养学生由实验现象得出物理结论的能力。3 在做演示实验之前,可先提出疑问,引起学生对实验的兴趣,让学生先猜想实验结果,由教师实验验证,使学生能更好的有目的去观察实验。二、重点、难点分析 1 本课重点在于掌握好单摆的周期公式及其成立条件。2 本课难点在于单摆回复力的分析。解决方案:对于重点内容通过课堂巩固练习加深印象。本课难点在于力的分析上
2、,由教师画好受力分析图,用彩粉笔标示,同时引导学生看书,这部分内容属于 A 类要求及了解内容,只要使大部分学生能明白基本过程即可,重在强调最后结论。三、教具 1 演示单摆振动周期的影响因素 三个单摆:两个摆长相同,质量不同;两个摆长不同。2 投影仪,投影片。(内容见附录)四、主要教学过程(一)引入新课 提问:什么是简谐运动?答:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相反。前节课我们学习了弹簧振子,了解了简谐运动和振动周期。日常生活中,我们常常见到钟表店里摆钟摆锤的振动(教师展示摆钟钟摆的振动),这种振动有什么特点呢?它是根据什么原理制成的?钟摆类似于物理上的一种理想模
3、型单摆。我们就来分析一下单摆来解决以上的问题。(二)教学过程设计 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!(教师拿出单摆展示,同时介绍单摆构成)这就是单摆,一根绳子上端固定,下端系着一个球。物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一个一定质量的质点,在竖直平面内小角度地摆动。所以,实际的单摆要求绳子轻而长,小球要小而重,将摆球拉到某一高度由静止释放,单摆振动类似于钟摆振动。我们这一章研究的是机械振动,而单摆振动也属于机械振动,单摆振动也是在某一平衡位置附近来回振动,这个平衡位置,就是绳子处于竖直的位置。我们在学习机
4、械振动时,曾经提到过机械振动的两个必要条件,一是运动中物体所受阻力要足够小;二是物体离开平衡位置后,总是受到回复力的作用。对于第一个条件单摆是符合的,单摆绳要轻而长,球要小而重都是为了减少阻力;第二个条件说到回复力。提问:单摆的回复力又由谁来提供?答:单摆的回复力由绳的拉力和重力的合力来提供。(教师对答案先不否定,通过对学生的提问,教师把受力图画在黑板上。)1 单摆的回复力 要分析单摆回复力,先从单摆受力入手。单摆从 A 位置释放,沿 AOB圆弧在平衡点 O 附近来回运动,以任一位置 C 为例,此时摆球受重力 G,拉力 T 作用,由于摆球沿圆弧运动,所以将重力分解成切线方向分力 G1和沿半径方
5、向 G2,悬线拉力 T 和 G2合力必然沿半径指向圆心,提供了向心力。那么另一重力分力 G1不论是在 O 左侧还是右侧始终指向平衡位置,而且正是在 G1作用下摆球才能回到平衡位置。(此处可以再复习平衡位置与回复力的关系:平衡位置是回复力为零的位置。)因此 G1就是摆球的回复力。回复力怎么表示?由单摆的回复力的表达式能否看出单摆的振动是简谐运动?书上已给出了具体的推导过程,其中用到了两个近似:(1)sin ;(2)在小角度下 AO 直线与 AO 弧线近似相等。这两个近似成立的条件是摆角很小,5。(见附表,打印在投影片上。)由投影片我们可知 在 5 之内,并且以弧度为角度单位,sin 。在分析了推
6、导过程后,给出结论:5 的情况下,单摆的回复力为 满足简谐运动的条件,即物体在大小与位移大小成正比,方向与位移方向相反的回复力作用下的振动,为简谐运动。所以,当 5 时,单摆振动是一种简谐运动。2 单摆振动是简谐运动 特征:回复力大小与位移大小成正比,方向与位移方向相反。但这个回复力的得到并不是无条件的,一定是在摆角 5 时,单摆振动回复力才具有这个特征。这也就是单摆振动是简谐运动的条件。欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!条件:摆角 5。前面我们所学简谐运动是以弹簧振子系统为例,单摆振动和弹簧振子不同,从回复力上说,虽然都具有同一
7、特征,却由不同的力来提供。弹簧振子回复力由合力提供,而单摆则是由重力的一个分力来提供回复力。这是回复力不同,那么其他方面,还有没有不同呢?我们在学习弹簧振子做简谐运动时,还提到过弹簧振子系统周期与振幅无关,那么单摆的周期和振幅有没有关系呢?下面我们做个实验来看一看。3 单摆的周期 要研究周期和振幅有没有关系,其他条件就应不变。这里有两个单摆(展示单摆),摆长相同,摆球质量不同,这会不会影响实验结果呢?也就是单摆的周期和摆球的质量有没有关?那么就先来看一下质量不同,摆长和振幅相同,单摆振动周期是不是相同。演示 1 将摆长相同,质量不同的摆球拉到同一高度释放。现象:两摆球摆动是同步的,即说明单摆的
8、周期与摆球质量无关,不会受影响。那么就可以用这两个单摆去研究周期和振幅的关系了,在做之前还要明确一点,振幅是不是可任意取?这个实验主要是为研究属于简谐运动的单摆振动的周期,所以摆角不要超过 5。演示 2 摆角小于 5的情况下,把两个摆球从不同高度释放。现象:摆球同步振动,说明单摆振动的周期和振幅无关。刚才做过的两个演示实验,证实了单摆振动周期和摆球质量、振幅无关,那么周期和什么有关?由前所说这两个摆摆长相等,如果 L 不等,改变了这个条件会不会影响周期?演示 3 取摆长不同,两个摆球从某一高度同时释放,注意要 5。现象:两摆振动不同步,而且摆长越长,振动就越慢。这说明单摆振动和摆长有关。具体有
9、什么关系呢?经过一系列的理论推导和证明得到:同时这个公式的提出,也是在单摆振动是简谐运动的前提下,即满足摆角5。条件:摆角 5 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!还可以根据这个周期公式测某地的重力加速度,由公式可知只要测出单摆的摆长、周期,就可以得到单摆所在地的重力加速度。提问:由以上演示实验和周期公式,我们可知道周期与哪些因素有关,与哪些因素无关?答:周期与摆长和重力加速度有关,而与振幅和质量无关。单摆周期的这种与振幅无关的性质,叫做等时性。单摆的等时性是由伽利略首先发现的。(此处可以讲一下伽利略发现单摆等时性的小故事。)钟摆的
10、摆动就具有这种性质,摆钟也是根据这个原理制成的,据说这种等时性最早是由伽利略从教堂的灯的摆动发现的。如果条件改变了,比如说(拿出摆钟展示)这个钟走得慢了,那么就要把摆长调整一下,应缩短 L,使 T 减小;如果这个钟在北京走得好好的,带到广州去会怎么样?由于广州 g,小于北京的 g 值,所以 T 变大,钟也会走慢;同样,把钟带到月球上钟也会变慢。4 课堂练习(见投影片)题目 甲乙两个单摆,甲的摆长是乙摆长的 4 倍,乙摆球质量是甲球质量的2 倍。在甲振动 5 次的时间内,乙摆球振动_次。分析:此题考查的是周期的影响因素。已知摆长和质量比例关系,但由周期公式和前面所做演示实验可知,周期与质量无关,甲的摆长是乙的摆长的 4 倍,那么甲的周期就是乙的周期的 2 倍,频率是 1/2,所以甲振动 5 次,同时乙振动10 次。五、课堂小结 本节课主要讲了单摆振动的规律,只有在小角度时单摆振动才能近 式测某地的重力加速度,由公式可知只要测出单摆的摆长、周期,就可以得到单摆所在地的重力加速度。