423 景德镇白鹭大桥钢塔竖向转体施工技术.doc

上传人:e****s 文档编号:61747645 上传时间:2022-11-21 格式:DOC 页数:11 大小:1.21MB
返回 下载 相关 举报
423 景德镇白鹭大桥钢塔竖向转体施工技术.doc_第1页
第1页 / 共11页
423 景德镇白鹭大桥钢塔竖向转体施工技术.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《423 景德镇白鹭大桥钢塔竖向转体施工技术.doc》由会员分享,可在线阅读,更多相关《423 景德镇白鹭大桥钢塔竖向转体施工技术.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、景德镇白鹭大桥钢塔竖向转体施工技术快乐泽 范大意 杨仁康摘 要 目的:介绍景德镇白鹭大桥主桥钢塔竖向转体施工和计算机控制液压同步整体提升技术在竖转过程中的运用及其控制措施,为今后类似桥梁施工提供借鉴。方法:采用扳起法竖向转体施工即在被扳起的钢塔上安装人字扒杆,扒杆和钢塔本身形成一个稳定的三角结构,然后利用桥梁本身斜拉索锚箱作为锚点,采用钢绞线作为临时拉索,油缸集群,计算机控制同步提升将钢塔竖向转体到位。结果:历时9小时18分,钢塔成功竖转58到位,合拢精度满足设计要求,偏差仅为2mm,临时索力同计算相符。结论:对于长达88米的钢塔,整体采用扳起法竖向转体施工为国内首创,竖向转体全过程采用计算机

2、控制,这也是目前国内最新颖最先进的大型构件提升安装技术。 关键词 钢箱塔 竖向转体 同步提升 技术创新1 工程概况白鹭大桥位于景德镇市昌江大桥下游约1km,是景德镇市外环线的重要工程,按双向四车道城市主干道标准设计,全长795m,其中桥梁范围为487m,桥面总宽度为29m,如图1所示。 图1 景德镇白鹭大桥主桥布置图单位:mm白鹭大桥主桥结构形式为三跨连续单索面独塔无背索竖琴式斜拉桥,主跨跨径为120m,两边跨跨径为,总长。江中距两岸40m左右各设一主墩和副墩。主梁为连续结构,在塔梁处与塔、墩固结。钢梁采用封闭型扁平钢箱梁加大挑臂结构形式,横隔梁及大挑臂横向间距,梁高,箱梁顶宽29m。其中封闭

3、钢箱宽20m,挑臂为2。索塔的主体结构为矩形钢箱三室结构,桥面上垂直高度,塔身倾斜58度。索塔顺桥向截面尺寸由塔顶端渐变到根部的8m,横桥向宽。索塔钢箱内填充C30微膨胀砼,采用焊钉来加强钢箱与砼的连接。顺桥向翼缘板钢板厚度为12-25mm,横桥向腹板厚10-20mm,纵向加劲采用I型扁钢,横向设环向加劲和横隔板。钢梁钢塔均为全焊接结构,钢材为Q345q-D, 主桥结构设计用钢量共计3200吨,其中钢塔重量为600吨。斜拉索采用竖琴式平行钢索,主梁上索距为,全桥共12根。斜拉索水平夹角约25度,规格为SNS/S-7187高强度低松弛镀锌钢丝,标准抗拉强度为1670Mpa。2 钢塔竖转施工方案必

4、选21方案一 概述 使用一个约4050m的塔架进行安装。先将钢塔拖拉到位、穿销。然后搭设安装塔架:用顶升方法将塔架逐节每个标准节为5m安装到位,拉紧缆风。随后将钢绞线连接在油缸和地锚之间,通过铰销将其分别与钢塔和塔架横梁的耳板相联,最后通过油缸拉钢绞线使钢塔竖转,到与水平面成58角度时停止,如图2所示。图2 方案一模型 特点优点:整个系统受力较小,尤其是钢塔本身。缺点:整个塔架需要顶升安装,需高空作业。另外塔架横梁与立柱间的联系受力较大,不易设计,塔架的投资也较大。同时,塔架需要设置后拉杆,如果采用缆风绳代替后拉杆那么钢丝绳尺寸较大。2.2 方案二 概述扳起法安装,即在钢塔上安装一个临时起吊支

5、架由拉杆、压杆、横梁和天锚组成。先将钢塔拖拉到位,用起重机将压杆吊起,穿销安装到钢塔压杆支座上,将压杆用适当支架支撑好,然后安装压杆横梁和拉杆,将拉杆、天锚和横梁的耳板穿销连接,油缸底座与钢梁上拉点的耳板连接。接着安装油缸,然后将钢绞线穿入油缸和天锚之中,启动液压泵站将钢绞线张紧,逐渐提升拉压杆到位,将拉杆穿销安装到钢塔拉杆支座上,使整个体系稳定。此时就可以进行钢塔整体竖转,到钢塔与水平面成580角时停止,如图3所示。图3 方案二模型 特点优点:没有高空作业,整个竖转系统安装和拆卸迅速方便,使用辅助设备少,整个工程作业量小,12h以内可完成竖转,适合现场施工条件的要求,在整体提升方案中也是较为

6、先进的施工方式。缺点:整个体系受力较大,需布置较多油缸,钢塔本身亦需要适当加强,拉点部位的根底受力较大,所以该点最好借用桥梁本身结构,本桥也具备这个条件,可以利用钢梁上斜拉索锚箱作为拉点。2.3 方案确定经过比选,决定采用第二方案。系统的具体布置如图4所示。 图4 景德镇白鹭大桥竖向转体施工方案总图3 主要施工技术要点3.1 钢塔制作及顶推由于受施工场地和运输条件限制,钢塔采用工厂制作板单元,现场拼装焊接成节段,然后实施顶推的方案。塔座同塔1在平台上匹配安装,同时匹配安装转铰窝和铰轴,然后将塔座拖至理论位置按设计要求进行安装如图5所示,误差为0。钢塔顶推差3m到位时进行纠偏,使钢塔轴线和理论轴

7、线吻合,然后以塔座为基准在上下游各安装4m长的导向,使钢塔沿导向顺利就位。实测钢塔前端偏位为0,尾端偏位为20mm。图5 钢塔顶推示意图3.2 拉压杆安装利用钢塔竖转临时索起升安装拉压杆,因其原始状态躺在钢塔上,这种情况下起升根本上处于自锁状态,是拉不动的,必须用千斤顶将拉压杆铰点顶高至6m。拉压杆安装步骤如图6所示。图6 拉压杆安装步骤图单位:mm3.3 转铰窝和转轴的设计和安装精度转铰窝和转轴均采用35锻钢制造,竖转过程中,钢绞线拉力的大小是否同计算相符、转动是否顺利取决于转铰窝和转轴的安装精度及润滑情况。在转铰窝安装过程中,由于焊接变形影响使得转铰窝不同心度超过了5mm,采取的处理方法为

8、:按照转轴的半径和长度制造了一个同心轴,将同心轴按设计要求安放在转铰窝上,在同心轴和转铰窝的间隙内填充巴氏合金,然后在转铰窝周边焊上6mm厚钢板将其封闭以提高其抗压强度。经过以上处理后的转铰窝安装精度结果如下:上下游转铰轴中心里程误差1mm;顶面标高误差下游为1mm,上游为,上下游间最大误差,铰轴外侧中心标高误差;用长钢尺测量上下游塔座顶板到转铰轴距离为7040mm,上下游塔1#顶板到铰轴距离也为7040mm如图7所示,证明竖转到位后和塔座能够完全吻合,铰轴标高误差为其本身安装不完全同心引起。铰轴处的转动摩擦系数理论上不能给出较准确的数值,根据以往转动或滚动摩擦的经验,如果接触面不能完全耦合,

9、转动过程中会发生爬坡现象或发出铿铿的声音。实际操作时保证转角窝和轴等机加工件的精度,同时保证其耦合面充分润滑,消除了由于接触及润滑不良引起的振动和异响,起塔过程十分平稳。 图7 铰轴铰窝安装示意图单位:mm3.4 横向抗风环套设计为保证钢塔在竖转过程中的横向稳定,除在塔顶横向两侧布置了缆风绳外,在转铰轴处还设置了横向抗风环套,环套内径比转铰轴外径仅大2mm,使其只能在指定平面内转动,有效地加强了钢塔扳起过程中的横向稳定,实际竖转过程中两侧缆风绳根本上没有带劲。其结构布置如图8所示。 图8 横向抗风环套安装示意图3.5 临时索后锚碇设计本次竖向转体施工中,采用主梁斜拉索锚箱作为地锚承重是非常成功

10、、非常合理,也是非常经济的。它利用钢梁节段自重来平衡临时拉索产生的竖向力,依靠钢梁本身的轴向承载能力抵抗其水平力,并将水平力传到主墩。然后根据临时索力和设计上一期恒载对单根永久斜拉索要求的索力选择锚点数量。3.6 计算机控制液压同步提升计算机控制液压同步提升技术是一项新颖的构件提升安装施工技术,它采用柔性钢绞线承重、提升油缸集群、计算机控制、液压同步提升新原理,结合现代化施工工艺,将成千上万吨的构件在地面拼装后,整体提升到预定位置安装就位,实现大吨位、大跨度、大面积的超大型构件超高空整体同步提升。3.7 测量控制钢塔到位测量控制采用双控方式,一方面在塔座上设置58限位装置,另一方面在塔上布置到

11、位观测标记,并且自始至终均在顺桥向中心线上监测钢塔轴线偏位情况。3.8 合拢缝焊接钢塔到位后进行轴线偏位测量,启用横向缆风进行纠偏,并尽快进行临时锁定和合拢缝焊接。 先制作上、下游腹板合拢缝,两板对接坡口为555,钝边为0,单面v形坡口,两板纵向对接留6-8mm缝隙,反面贴陶瓷衬垫。坡口内磨锈去氧化层及缺陷,并将坡口两边磨光宽20mm,报检合格后进行焊接。不等厚板对接应按规定过渡。 每块腹板从下水平隔板处由东向西焊接,两块腹板同时进行焊接,采用多层多道焊接,确定合理焊接顺序以减小焊接应力,打底焊焊高应大于5mm。焊接时采用码板固定,控制焊接变形。 制作顶板及上、下水平隔板,焊缝探伤合格后,及时

12、安装嵌补筋板。 以上三道工序施工时,钢塔自重和临时索力均集中在转铰窝处,所有焊接均在无应力状态下施焊,为保证钢塔全截面受力,需经过计算调整临时拉索索力,使铰点受力转移为全截面受力,然后撤除转角窝部件,用汽油清洗干净,现场配装切除局部。切除塔座局部临时加强板,留出操作空间,制作底板合拢缝。底板与钢塔底板两板对接合并坡口为555,钝边为0,单面v形坡口,两板纵向对接留6-8mm缝隙,反面贴陶瓷衬垫。底板与钢梁顶面T接面不开坡口,利用自倾角形成坡口,焊接时,先焊内部,再在外侧清根,坡口打磨后进行焊接。焊缝探伤合格后,及时安装嵌补筋板。 焊接钢塔横隔板。 焊接时如有变形应及时校正,焊后应对钢塔的顶板、

13、底板、腹板的对接焊缝进行打磨。合拢焊缝按标准要求进行无损探伤,合格率为100。临时索撤除和斜拉索挂设合拢缝焊接完成后挂设12斜拉索并张拉到150吨力,整体撤除钢塔竖转临时三角扒杆,然后一次性挂设剩余的11根索图9,并按计算进行局部张拉,使钢塔根本处于轴向受压状态,弯曲应力很小最大为2MPa,截面应力到达最优应力图见图10。 图9 桥梁博士计算模型图 图10 截面上下缘应力图单位:MPa4 竖向转体施工方案计算4.1 主塔计算主塔可以看成是一个箱型长梁,翼缘板和腹板设计厚度较小,因此在主塔的纵向加了两道纵隔板,钢塔内壁及纵隔板上加焊了假设干道纵筋;主塔横向加了假设干横隔板和横向加劲板。实际制造中

14、,横隔板有三个孔,为加强其强度,在板上焊有加强筋,人孔四周又包了一块板。考虑到其对整个主塔的受力影响不大,所以为了建模方便,计算模型不挖人孔,其周围的板也不加。隔板的构造如图11所示。 图11 横隔板构造图 使用ANSYS有限元分析软件建立主塔的模型,计算立柱铰销和吊耳处的最大应力。主要使用了四种单元,其中,塔的四周、两道纵隔板、横隔板和横向加劲板使用板单元shell63,纵筋及前拉杆、前压杆使用梁单元beam188,后拉杆使用杆单元link8,每组吊耳板之间的销使用梁单元beam4。主塔的有限元模型如图12,整个模型使用了103576个节点,113448个单元。考虑到主塔在安装过程中可能会出

15、现大风,因此在建模和计算中考虑了两种工况:无风和有风5级风,风速为10m/s。无风时结构的载荷即为其自重,有风时还要加上侧向风载荷。约束加在两个地方:立柱铰销处沿轴向和径向的位移及地锚处的所有自由度。 图12 钢塔竖转计算模型图钢塔竖向转体施工在有风工况下各节点计算反力如下表:节点 FX/NFY/NFZ/NMX/(Nm)MY(Nm)MZ(Nm)9402-0.10697E+06-0.82884E+06950341571.64E+069559-0.11464E+06-0.24814E+0696420.14374E+060.23382E+079648-80976.0.10204E+079691-57

16、641.17037.-63583.9692-29781.43024.-74521.9693-17321.43624.-43624.9694-12598.0.11435E+06-66022.9695-27246.-0.34686E+0692941.9696-41509.23441.-87481.9697-12440.0.13156E+06-0.22788E+0696980.13956E+06-0.13956E+06969919144.0.29073E+06-0.16785E+06970056861.-0.49289E+060.13207E+0697160.17715E+060.77991E+06

17、972026424.-11404.42559.972119634.47577.-82405.972220018.45532.-45532.972328693.0.10436E+06-60252.972468778.-0.19967E+0653501.97830.15303E+06-0.11799E+079789-85354.-0.26505E+07981781363.0.21036E+079818-41924.-0.10595E+060.39542E+069819-21930.0.23375E+06-0.40487E+069820-10972.0.21299E+06-0.21299E+0698

18、210.38091E+06-0.21992E+06982225328.-0.18998E+0650905.98230.17904E+060.88779E+06982759867.-80770.0.30144E+06982826862.93798.-0.16246E+06982924318.72105.-72105.983035116.0.14691E+06-84818.983176634.-0.15065E+0640366.9907-0.18139E+06-0.88117E+069935-91280.0.80468E+069936 -77468-470140.17546E+069937-383

19、6176861-0.13313E+060009938-2902364090-640900009939-299160.12886E+06-743960009940-46996-0.15348E+064112500092258-0.12797E+07 0.36899E+0700092259-0.12752E+070.36771E+070000.11101E+060.60120E+07000 ANSYS9.0计算结果:无风工况下最大应力为372Mpa,有风工况下5级风最大应力为486Mpa,均发生在转轴、钢塔底腹板和边腹板的焊接相交点处的微单元上。理论计算虽存在超应力情况,判断不会压溃。 钢塔计算重

20、量为601.2吨,作用在距转轴中心35.13米处,在钢塔平卧初始工况刚启动时为最不利,由此引起的钢绞线拉力和各部位反力最大。根据该结果钢绞线最大拉力为:FY128t FZ369t所以F2t,那么钢绞线应力为:1860Mpa此时压杆压力为t,拉杆拉力为t,转铰支座处反力为1131t。实际提升时油缸反响的最大荷载为786tt比拟,误差仅为0.6,证明转铰窝、转轴和抗风环套安装非常精确,它们之间的转动摩擦面刨光涂满黄油后转动摩擦系数很小,为以后同类型工程施工提供了可以借鉴的依据。4.2 拉压杆铰点高度H的选定适宜的H值会使拉压杆的制造、安装方便并使临时拉索的拉力控制在较小范围内。H过大索力较小但拉压

21、杆制造、安装困难,且结构用钢量较多,本钱大;H过小那么索力较大,引起钢塔本身受力大,加固要求高。经过反复模拟计算、研究比拟,m,实践证明是合理的。5 计算机控制液压同步提升技术 本次钢塔竖转提升设备是上海同新机电控制技术提供和操作的,其技术特点、系统组成和控制原理如下。5.1 计算机控制液压同步提升技术的特点1通过提升设备扩展组合,提升重量、跨度、面积不受限制;2采用柔性索具承重,只要有合理的承重吊点,提升高度与提升幅度不受限制;3提升油缸锚具具有逆向运动自锁性,使提升过程十分平安,并且构件可在提升过程中的任意位置长期可靠锁定;4提升系统具有毫米级的微调功能,能实现空中垂直精确定位;5设备体积

22、小,自重轻,承载能力大,特别适宜于在狭小空间或室内进行大吨位构件提升;6设备自动化程度高,操作方便灵活,平安性好,可靠性高,适应面广,通用性强。5.2 系统组成计算机控制液压同步提升系统由钢绞线及提升油缸集群承重部件、液压泵站驱动部件、传感检测及计算机控制控制部件和远程监视系统等几个局部组成。钢绞线及提升油缸是系统的承重部件,用来承受提升构件的重量。可以根据提升重量提升载荷的大小来配置提升油缸的数量,每个提升吊点中油缸可以并联使用。本工程采用350t提升油缸,为穿芯式结构。钢绞线采用高强度低松弛预应力钢绞线,公称直径为,抗拉强度为1860N/mm,破断拉力为260.7KN,伸长率在1时的最小载

23、荷221.5KN,每米重量为。钢绞线符合国际标准ASTM A41687a,其抗拉强度、几何尺寸和外表质量都得到严格保证;根据方案要求,需要钢绞线18t左右,其中左旋9t,右旋9t。液压泵站是提升系统的动力驱动局部,它的性能及可靠性对整个提升系统稳定可靠工作影响最大。在液压系统中,采用比例同步技术,可以有效地提高整个系统的同步调节性能。传感检测主要用来获得提升油缸的位置信息、载荷信息和整个被提升构件空中姿态信息,并将这些信息通过现场实时网络传输给主控计算机。主控计算机可以根据当前网络传来的油缸位置信息决定提升油缸的下一步动作,同时,主控计算机也可以根据网络传来的提升载荷信息和构件姿态信息决定整个

24、系统的同步调节量。5.3 同步提升控制原理及动作过程 同步提升控制原理主控计算机除了控制所有提升油缸的统一动作之外,还必须保证各个提升吊点的位置同步。在提升体系中,设定主令提升吊点,其它提升吊点均以主令吊点的位置作为参考来进行调节。主令提升吊点决定整个提升系统的提升速度,操作人员可以根据泵站的流量分配和其它因素来设定提升速度。主令提升速度的设定是通过液压系统中的比例阀来实现的。在提升系统中,每个提升吊点下面均布置一台长距离传感器,在提升过程中这些长距离传感器可以随时测量当前的构件高度,并通过现场实时网络传送给主控计算机。每个跟随提升吊点与主令提升吊点的跟随情况可以用长距离传感器测量的高度差反映

25、出来。主控计算机可以根据跟随提升吊点当前的高度差,依照一定的控制算法,来决定相应比例阀的控制量大小,从而,实现每一跟随提升吊点与主令提升吊点的位置同步。为了提高构件的平安性,在每个提升吊点都布置了油压传感器,主控计算机可以通过现场实时网络监测每个提升吊点的载荷变化情况。如果提升吊点的载荷有异常的突变,那么计算时机自动停机,并报警示意。 提升动作原理提升油缸数量确定之后,每台提升油缸上安装一套位置传感器,传感器可以反映主油缸的位置情况、上下锚具的松紧情况。通过现场实时网络,主控计算机可以获取所有提升油缸的当前状态。根据提升油缸的当前状态,主控计算机结合控制要求例如,手动、顺控、自动可以决定提升油

26、缸的下一步动作。6 结语1白鹭大桥主桥结构形式采用三跨连续单索面独塔无背索竖琴式斜拉桥,对于长达88米的钢塔,整体采用扳起法竖向转体施工方案为国内首创。同其它方案相比,最少节约本钱150万元,工期提前30天以上,表达了其创新性和先进型,并具有较明显的经济效益。2竖向转体施工全过程采用计算机控制液压同步整体提升技术,这是目前国内最新颖、最先进的大型构件提升安装施工工艺在桥梁建设中的应用。随着科技进步和技术创新的不断加快,先进的施工工艺会不断在桥梁施工中得到应用,并且在提高平安控制能力、降低施工本钱等方面发挥越来越重要的作用。3竖向转体施工中,从节约本钱的角度出发,后锚点如何考虑利用桥梁本身结构是值得探讨的一个问题,它可以利用桥梁墩台及其根底结构,也可以在上部结构上设置锚点。本次直接采用钢梁斜拉索锚箱作为锚点非常成功、非常合理,也是非常经济的,同时也为今后类似桥梁施工提供了借鉴。4计算机控制液压同步整体提升技术由专业化作业队伍实施。本案说明,依靠先进的技术和设备,进行专业化作业,在单项工程施工中具有明显的优势,既加强了平安质量控制,也促进了施工技术的创新和开展。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁