统计学总复习提纲可汗版.doc

上传人:飞****2 文档编号:61361514 上传时间:2022-11-21 格式:DOC 页数:16 大小:158KB
返回 下载 相关 举报
统计学总复习提纲可汗版.doc_第1页
第1页 / 共16页
统计学总复习提纲可汗版.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《统计学总复习提纲可汗版.doc》由会员分享,可在线阅读,更多相关《统计学总复习提纲可汗版.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、统计学复习提纲第一章:绪论11)统计的含义: 统计一词有统计工作、统计资料、统计科学三种含义,但最基本的还是统计工作。没有统计工作就不会有统计资料,没有丰富的统计实践经验就不会产生统计科学。2)统计的研究对象:统计学的研究对象是统计工作的规律,即搜集、整理和分析统计数据的方法,是一门方法论科学。3)统计的特点:数量性、具体性、综合性2、统计学的基本概念1)总体:总体是指在某种共性的基础上由许多个别事物结合起来的整体。总体有三方面特征:同质性、大量性、差异性总体可分为有限总体和无限总体2)总体单位:构成总体的个别事物叫总体单位。总体和总体单位是根据统计研究的目的来确定的。3)标志:标志是指说明总

2、体单位特征的名称。标志可分为数量标志(用数字回答问题)和品质标志(用文字回答问题)。标志还可分为不变标志和可变标志。不变标志:所有总体单位共同具有的特征。它是构成总体的必要条件和确定总体范围的标准。可变标志:在总体各单位之间必然存在差异的标志。4)变量:可变标志中既有品质标志也有数量标志。可变的数量标志就叫变量。变量的具体数值叫变量值。凡变量值只能以整数出现的变量,叫离散变量。凡变量值可作无限分割的变量,叫连续变量。5)指标与指标体系:指标:说明总体数量特征的概念。指标体系:以共同的研究目的为纽带而相互联系的一系列统计指标。6)指标与标志的区别与联系区别有二:第一,指标说明总体的特征;而标志说

3、明总体单位的特征。 第二,指标只反映总体的数量特征,所有指标都要用数字来回答;标志则既有反映总体单位的数量特征(用数字回答),也有反映总体单位的品质特征(用文字回答)。二者联系:主要表现:许多标志的数值都是由总体各单位的数量标志的标志值汇总而得来的。品质标志虽然本身不具有数值,但有些指标是按品质标志分组分组计算得出。由于总体和总体单位可随统计研究的目的而易位,故指标和数量标志在一定的条件下可以变换。第二章:统计调查1、统计调查:是指根据统计研究的目的,有组织、有计划地搜集统计资料的过程。2、统计调查的基本原则: 1)要实事求是,如实反映情况 2)要及时反映,及时预报 3)要数字与情况相结合3、

4、统计调查的组织形式: 1)普查:普查是指为搜集某种社会经济现象在某时某地的情况而专门组织的一次性全面调查。 2)随机抽样调查:又叫概率抽样,是指按随机原则(机会均等原则)从总体中抽取部分单位进行调查,并借以对端和认识总体的一种统计方法。它是各种非全面调查方法中最科学的一种方法。(抽样调查即非全面调查。按抽选调查单位方法的不同,它分为随机抽样和非随机抽样两类。) 3)非随机抽样调查: 是指调查者有意识地或随意而非随机地从总体中抽取部分单位进行调查的统计方法。 非随机抽样不遵循随机原则,不能事先计算和控制抽样误差,一般也不用于推算总体指标。 4)定期统计报表:A.是指按国家同一规定的指标体系、表格

5、形式、报送程序和报送时间,定期地自下而上地向国家和上级主管部门报送统计资料的一中统计调查形式。它是国家取得经常性的基本统计资料的手段。它即可用于全面调查,也可用于非全面调查。B.按内容的不同,可分为基本统计报表和专业统计报表。按报告周期的不同,可分为日报、旬报、月报、季报、半年报和年报。按报告形式的不同,可分为电讯报和表式报。4、非随机抽样的类型1)重点抽样:是指只对总体中为数不多但影响颇大(其标志值在总体标志总量中所占比重较大)的重点单位进行研究的一种非全面调查。它适用于分布比较集中的事物。特点:以较少的人力、物力和财力,几时地掌握总体的基本状况及其发展变化的基本趋势。2)典型抽样:是指根据

6、对调查对象的初步了解,有意识地从中挑选有代表性的单位进行研究的一种非全面调查。特点:灵活方便,反应迅速,省时省力,深入具体,可以把数字和情况结合起来。作用:a.“解剖麻雀”,推论一般,指导全局。 b.研究新事物,推广新鲜经验,促进新生事物的发展。 c.有利于全局与典型、数字与情况的结合,促进统计研究的深化。3)任意抽样:又叫方便抽样或随意抽样(不是随机抽样)。是指调查者随意抽取调查单位进行调查的一种方法,但不保证每个单位都有相等的中选机会。4)配额抽样:配额抽样就是在对总体作若干种分类和样本总容量既定的情况下,按配额(按一定要求给定的样板单位数)从总体各部分抽取调查单位进行调查的方法。5、调查

7、误差的概念和种类概念:是指调查所得的统计数字与调查对象的实际数量之间的差异,即调查所得的数量大于或小于调查对象的实际数量之差。种类:1) 工作误差:由于调查工作中的失误所造成的误差。2) 代表性误差:以部分推断总体时必然存在的误差。第三章:统计整理统计整理的程序-审核,分组,汇总,制表统计分组的种类:按作用目的分:类型分组,结构分组,分析分组;按标志的多少和分组形式分:简单分组,复合分组,并列分组;按指标的性质分:品质分组,数量分组。(P43)1. 统计分组(根据社会经济现象的特点和统计研究的目的要求,按照某种重要指标把总体分为若干部分的科学分类)1.1. 组数(即将总体分为几组)品质分组的组

8、数 确定主要取决于两个因素-(PPT)统计研究的要求(书:统计研究的任务)与(PPT)事物本身的属性(书:事物的特点).数量分组的组数 直接取决于两个因素-总体的标志变异全距;组距在等距分组的条件下,组数等于全距/组距。全距=最大指标值-最小指标值1.2. 组距组距=各组的最大指标值(上限)-各组最小指标值(下限)组数 组距确定的斯特杰斯经验公式:n=1+lg(N)/lg(2) 或是 n=1+1.33lg(N)d = R/n = (Xmax-Xmin)/1+1.33lg(n)n:数组;N:总体单位数;d:组距;R:全距Xmax:最大变量值; Xmin:最小变量值1.3. 组限(每组两端的数值)

9、每组的起点数值(最小值)为下限;终点数值(最大值)为上限。组限的形式:重合式:相邻两组中,前一组的上限与后一组的下限数值相重。一般用与连续变量。组距=本组上限-本组下限不重合式:前一组的上限与后一组的下限,两值紧密相连而又不相重复。一般用于离散变量。组距=下组下限-本组下限=本组上限-上组上限1.4. 组中值重合式:组中值=(上限+下限)/2=下限+组距/2=上限-组距/2不重合:组中值=(本组下限+下组下限)/2=本组下限+组距/2=下组下限-组距/2组距式分组中,常常遇到首末两组“开口”的情况,即有第一组上限无下限,最后一组由下限无上限,此时,组中值=上限-邻组组距/2=下限+邻组组距/2

10、2. 分布数列及其种类2.1. 分布数列:指反映总体单位在各组的分布状况的一系列数字,又叫次数分布或是次数分配。其包含两要素:一是组的名称;二是各组的次数(也称频数)或是频率。2.2. 分布数列的种类(以下数列见表p54-57)2.2.1. 按分组指标分:品质数列(由各组名称和各组单位数构成);变量数列(由变量和次数两个要素构成)2.2.2. 按分组形式分:单项式数列(各组都由一个具体的变量值(单项)来表示的数列);组距式数列(指各组都由两个变量值界定的变量区间(组距)来表示的数列,它又分为等距数列和不等距数列)。注:它们都属于变量数列。2.2.3. 按次数分布的特征分:钟形分布数列(其中包括

11、正态分布,偏态分布-右偏分布,左偏分布),U形分布数列,J形分布数列(包括J形,倒J形)第四章 总量指标和相对指标1. 总量指标和种类1.1. 总量指标:指反映社会经济现象在一定时间,地点条件下所达到的总规模,总水平或工作总量的综合指标。也称为绝对指标。表现形式:绝对数,增量。1.2. 总量指标的种类1.2.1. 按总量指标的总体内容分总体总量即总体单位数,它是由每个总体单位加总而得到的。标志总量是指总体各单位某一数量标志值得总和。1.2.2. 按其时间状态分时期指标也称为时期数。其特点:时期指标可以累计相加;时期指标数值的大小与时期的长短密切相关。时点指标也称为时点数。其特点:各时点指标不能

12、累计相加;时点指标数值的大小与时期长短无直接的关系。1.2.3. 按计量单位分;实物指标 是指以实物单位计量的总量指标,即以事物的物理属性或自然属性为计量单位的指标。实物单位分为:自然单位;度量衡单位;专用单位;复合单位;标准实物单位。例见(P79)价值指标 是以货币为计量单位的总量指标。劳动量指标 是以劳动量单位计量,即以劳动时间为计量单位的指标。相对指标和种类及各种相对指标的计算1.3. 相对指标(指两个有联系的统计指标进行对比的比值,也称为相对数)其表现形式:无名数;有名数。无名数是抽象化的数值,表现形式:成数,系数,倍数,百分数,千分数等。(P81)有名数是指有具体内容的计量单位的数值

13、。其有单名数和复名数之分。(p82) 1.4. 计划完成相对数及其派生公式1.4.1. 其指计划期内实际完成数与计划数之比。其考核、反映计划完成的程度(进度)。计划完成相对数=实际完成数/计划完成数100%(分子分母位置不能互换)。超额完成(或未完成)绝对数=实际完成数计划数1.4.2. 派生公式:(1)产量,产值增长百分数:计划完成相对数=(100%+实际增长%)/(100%+计划增长%)100%(2)产品成本降低百分数:计划完成相对数=(100%实际降低%)/(100%计划规定降低%)100%1.5. 结构相对数(部分占全体的比例,反映事物的内部构成、性质、质量及其变化。)结构相对数=总体

14、某部分数值/总体数值100%特点:同一总体的结构相对数之和应为100%,且分子分母位置不能互换。1.6. 比例相对数(指同一总体某一部分数值与另一部分数值对比的比值。反映总体各部分间的内在联系与比例关系。(同一总体不同部分比较)比例相对数=总体中某一部分数值/同一总体另一部分数值特点:分子分母可互换,且属于同一个总体。1.7. 比较相对数(同一时间的同类指标在不同空间对比的比值。反映同类现象在不同空间的数量差异。)比较相对数=甲地区(单位)某指标数值/乙地区(单位)同一指标数值特点:用百分数或倍数表示,分子分母可替换1.8. 动态相对数(某一社会经济现象在不同时期两个数值对比的比率。又称发展速

15、度或指数。反映事物发展变化的方向与程度。)动态相对数=报告期数值/基期数值100%其中:报告期又称计算期,是研究或计算时期。基期是作为比较基础的时期。特点:分子与分母的位置一般不能互换。常用百分数、倍数、千分数表示。1.9. 强度相对数(是指两个性质不同而又相互联系指标之比。反映一国一地的发展水平、力量强弱。反映事物存在的密度、普遍程度、运动强度、负担强度。反映经济效益的高低。)强度相对数=某一指标数值/另一有联系的指标数值特点:有些指标分子与分母可互换,形成正指标和逆指标两种计算方法,数值大小与强度成正比为正指标,反之为逆指标。计量单位常用复名数。第五章:平均指标1、平均指标及其种类; 平均

16、指标概念:平均指标是指同质总体各单位某一数量标志在一定时间、地点、条件下所达到的一般水平。是总体的代表值。它也是描述分布数列集中趋势的指标。 种类:算数平均数、调和平均数、几何平均数、众数和中位数2、各种平均指标的计算: 算术平均数:简单和加权简单算数平均数公式:加权算数平均数: 交替标志平均数; 调和平均数:简单和加权 几何平均数:简单和加权简单几何平均计算公式:加权集合平均计算公式: 众数:指总体中出现次数最多的标志值(不唯一)中位数:如果将总体各单位标志值按大小顺序排列,局域中点位置那个标志值就是中位数。(奇数个数据:(n+1)/2, 偶数个数据n/2)3、算术平均数、众数和中位数的关系

17、: (1)在正态分布的情况下,算数平均数、中位数和众数三者完全相等 (2)在偏态分布的情况下,变量数列是右偏时,就有众数中位数算数平均值 (3)在偏态分布的情况下,变量数列是左偏时,就有算术平均数中位数 0为右偏分布偏态系数 0为左偏分布峰度:峰度是指统计学中描述分布曲线峰顶尖峭程度的指标。峰态系数=0扁平峰度适中峰态系数0为尖峰分布第七章:抽样调查1、了解几种常用分布的特点:二项分布、泊松分布、超几何分布和(标准)正态分布。P175二项分布:是指只有两种可能结果的重复随机试验的概率分布。泊松分布:是指在=np恒定的情况下,当n趋于无穷大,p趋于0时,二项分布趋于泊松分布的概率分布。超几何分布

18、:是指只有两种可能结果的不重复试验的概率分布。2、了解大数定理、中心极限定理的的含义(一)大数定理是指大量随机变量的平均结果具有稳定性的一系列定理的总称,也称大数法则。(1).贝努里大数定理 设是n次独立试验中事件A发生的次数,P是事件A在每次试验中发生的概率,则对于任意正数,有: lim p|m/n-p| =1 这一定理表明,当试验在不变的条件下重复进行很多次时,随机事件出现的频率在它的概率附近摆动;并且只要试验次数n足够大,事件出现的频率就趋于其概率。(2).契比雪夫大数定理契比雪夫不等式 :契比雪夫定理: 设独立随机变量序列X(i),分别有数学期望E(Xi)和方差D(xi),并且有一致的

19、上限,即存在某一常数K使得D(xi) 0.8 高度相关; 当 0.3 R 0.8 中度相关; 当 R 0.3 低度相关3、熟悉回归的含义和种类;含义:回归是研究自变量与因变量之间的关系形式的分析方法种类:1)按变量的多少分一元回归方程和多元回归方程;2)按是否线性分线性回归方程和非线性回归方程;3)按是否有滞后关系分自身回归方程和无自身回归方程;4)按是否带虚拟变量分普通回归方程和带虚拟变量回归方程。4、相关分析和回归分析的区别和联系;区别:相关分析研究的都是随机变量,不分自变量与因变量;回归分析研究的变量要定出自变量(确定的变量)与因变量(随机变量)。联系:它们是研究现象之间相互依存关系的两

20、个不可分割的方面。5、简单直线回归的原理:最小平方法的中心思想原理:在相关图的分析的基础上,可以选择一定的回归方程式进行定量分析。对两个具有线性关系的变量,配合线性回归方程,并根据自变量的变动来测定因变量平均发展趋势。中心思想; 是通过数学模型,配合一条较为理想的趋势线。这条趋势线必须满足下列两点要求:(1)原数列的观察值与模型的估计值的离差平方和为最小;(2)原数列的观察值与模型的估计值的离差总和为零。6、总平方和; 反映因变量的 n 个观察值与其均值的总离差回归平方和: 反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也

21、称为可解释的平方和.残差平方和: 反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和.可决系数(判定系数):1) 是回归平方和占总离差平方和的比例2)反映回归直线的拟合程度3)取值范围在 0 , 1 之间4)R2 1,说明回归方程拟合的越好;R20,说明回归方程拟合的越差5)判定系数等于相关系数的平方,即R2(r)2可决系数和相关系数之间的数量关系;相关系数是可决系数的平方根。7、回归系数的含义和解释:回归分析中度量依变量对自变量的相依程度的指标,它反映当自变量每变化一个单位时,依变量所期望的变化量。回归系数的标准误差:t统计量的含义:回归系数显著性的P值检验:模

22、型整体显著性的F检熟悉估计量的评价标准:无偏性,有效性,相合性根据回归模型进行预测:根据自变量 x 的取值估计或预测因变量 y的取值。第十章 时间数列分析指标1、区分时期数列和时点数列时期数列:是指由反映某种社会经济现象在一段时间内发展过程累计量的总量指标所构成的绝对数时间数列。 时期指标时间数列具有以下特点:A)可加性,不同时期的总量指标可以相加;B)指标值的大小与所属时间的长短有直接关系。C)指标值采用连续统计的方式获得。时点数列:是指反映某种现象在一定时点(瞬间)上的发展状况的总量指标所构成的绝对数时间数列。 时点指标时间序列具有以下特点:A)不可加性。不同时点的总量指标不可相加,这是因

23、为把不同时点的总量指标相加后,无法解释所得数值的时间状态。B)指标数值的大小与时点间隔的长短一般没有直接关系。在时点数列中,相邻两个指标所属时间的差距为时点间隔。C)指标值采用间断统计的方式获得。2、水平分析指标:发展水平、平均发展水平;增长量、平均增长量; 发展水平:时间数列中的每一具体指标值,反映某种社会经济现象在一定时期或时点所达到的规模或水平。 平均发展水平:是将时间数列中各时期的发展水平加以平均而得出的平均数。因是不同时间的,动态上的平均,又叫序时平均数或动态平均数。 增长量:是指时间数列中计算期水平和基期水平之差,说明社会经济现象在一定时期内增减变化的绝对量。 平均增长量:是指逐期

24、增长量的简单算数平均数,说明经济现象在一段较长时间内,平均每期增减变化的数量。3、速度分析指标:(环比、定基)发展速度、(环比、定基)增长速度; 发展速度:计算期发展水平与基期发展水平之比,表示计算期水平已达到或相当于基期水平的多少,反映了某种社会经济现象在一定时期内发展的方向和速度。 定基发展速度:时间数列中计算期发展水平与固定基期发展水平之比,说明某种社会经济现象的逐期发展方向和速度。 环比发展速度:时间数列中计算期发展水平与前期发展水平之比,说明某种社会经济现象在较长时期内总的发展方向和速度,也叫总速度。 增长速度:计算增长量与基期发展水平之比,说明经济现象在一定时期内增减的快慢程度。

25、环比增长速度:逐期增长量与前期发展水平之比,表明社会经济现象逐期增长的程度。 定基增长速度是累积增长量与最初(基期)发展水平之比,表明社会经济现象在一定时期内增长的总速度。 4、平均发展速度和平均增长速度 平均发展速度:指环比发展速度的序时平均数,说明某种社会经济现象在一段较长时间内逐期发展变化的平均速度。 平均增长速度:平均发展速度的派生指标,说明某种社会经济现象在一段较长时期内逐期平均增减变化的程度。平均增长速度=平均发展速度-15、增长1%的绝对值 增长1%的绝对值=逐期增长量/环比增长速度=前期水平/100第十一章 时间数列预测方法1、 时间数列的因素分解:长期趋势、季节变动、循环变动

26、和不规则变动及其含义长期趋势:指受事物发展的根本原因制约而形成的事物在一段较长时期内持续增长或持续下降的基本趋势。季节变动:指由于自然条件、社会条件的影响,社会经济现象在一年内随着季节的转变而引起的周期性变动循环变动:指社会经济现象以若干年为周期呈波浪式的变动不规则变动:指由于天灾人祸战乱等意外因素的影响而产生的变动2、了解时间数列预测分析的基本原理:乘法型和加法型 乘法型:指时间数列由各种因素相乘的乘积所形成的结构类型。 Y=T*S*C*I 加法型:指时间数列由各种因素相加的总和所形成的结构类型。 Y=T+S+C+I3、长期趋势预测:了解时距扩大法、移动平均法、一次指数平滑法、最小平方法。时

27、距扩大法:A.定长期趋势最原始、最简单的方法。B.时间序列的时间单位予以扩大,并将相应时间内的指标值加以合并,从而得到一个扩大了时距的时间序列。C.用:消除较小时距单位内偶然因素的影响,显示现象变动的基本趋势移动平均法:对时间数列的各项数值,按照一定的时距进行逐期移动,计算出一系列序时平均数,形成一个派生的平均数时间数列,以此削弱不规则变动的影响,达到对原序列进行修匀的目的,显示出原数列的长期趋势指数平滑法:A.是加权平均的一种特殊形式B.对过去的观察值加权平均进行预测的一种方法C.观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑一次指数平滑:A.只有一个平滑系数B.观察值离预测时

28、期越久远,权数变得越小 C.以一段时期的预测值与观察值的线性组合作为t+1的预测值,其预测模型为 最小平方法。最小平方法:也称最小二乘法,是时间数列长期趋势预测分析中的传统方法。4、季节变动分析:同期水平平均法以若干年资料数据求出同月(季)的平均水平与各年总月(季)水平,进而对比得出各月(季)的季节指数来测定季节变动的程度。计算步骤:A, 计算各年同月(季)的平均数和总平均数;B.将同月(季)的平均数和总平均数对比第十二章 统计指数1、了解指数和指数体系的基本概念;广义指数:指反映社会经济现象变动与差异程度的相对数。包括一切动态相对数和某些比较相对数。如:产量指数、出口额指数、产值指数、出口购

29、买力指数、贸易条件指数等。狭义指数:指反映由不同度量的事物所构成的特殊总体变动或差异程度的特殊相对数。如:产量总指数、物价总指数、成本总指数等。 分类:按指数所研究对象或研究范围的不同分为:个体指数和总指数。按指数的作用不同可分为:质量指标指数和数量指标指数。按所用基期的不同可分为:定基指数和环比指数。按计算时所依据的数列性质不同可分为:时间数列指数、空间数列指数和属性数列指数。按编制方法和计算公式不同可分为:综合指数、平均指数。指数体系:广义:有若干内容上相互关联的统计指数所结成的体系。狭义:指在经济内容上有联系的几个指数所结成的数量关系式。2、综合指数:指数化因素、同度量因素、拉氏指数、派氏指数 指数化因素:即通过指数去反映其变化或差异程度的因素。 同度量因素:即将特殊总体中不同度量的事物转化为同度量事物的媒介因素。 3、综合指数的计算方法:从相对数和绝对数两个方面进行分解。销售量综合指数(数量指标综合指数)销售价格合指数(质量指标综合指数)销售额指数4、掌握利用指数体系进行因素分析连锁替代法:在被分析指标的因素结合式中和相互联系的数量关系,将各个因素的基期数字依次以报告期的数字替代,每次替代后的结果与替代前的结果进行对比从相对数和绝对数两方面分析各因素对现象总体的影响。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁