《一元二次方程的概念讲课教案.ppt》由会员分享,可在线阅读,更多相关《一元二次方程的概念讲课教案.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一元二次方程的概念思考思考1:方程(:方程(2)与一元一次方程的区别在哪里?)与一元一次方程的区别在哪里?思考思考2:方程(:方程(1)和方程()和方程(2)有什么共同点呢?)有什么共同点呢?思考思考3:你能类比一元一次方程给方程(:你能类比一元一次方程给方程(2)起个名)起个名称吗?称吗?思考思考4:根据以上讨论的结果,你能说出什么方程是:根据以上讨论的结果,你能说出什么方程是一元二次方程吗?一元二次方程吗?只含有一个未知数只含有一个未知数,并且未知数的,并且未知数的最高次数是最高次数是2的的整式方程整式方程,叫做一元二次方程。,叫做一元二次方程。一元一次方程一元一次方程一元二次方程一元二次
2、方程一般式一般式相同点相同点不同点不同点 一元一次方程与一元二次方一元一次方程与一元二次方程有什么区别与联系?程有什么区别与联系?ax=b (a0)ax2+bx+c=0 (a0)都是整式方程,只含有一个未知数都是整式方程,只含有一个未知数未知数最高次数是未知数最高次数是1未知数最高次数是未知数最高次数是2整式整式方程方程一元二次方程的概念一元二次方程的概念 像这样的等号两边都是整式像这样的等号两边都是整式,只含有只含有一个未知数一个未知数(一元一元),并且未知数的最,并且未知数的最高次数是高次数是2(2(二次二次)的方程叫做的方程叫做一元二次一元二次方程。方程。都是都是整式整式方程方程;只含只
3、含一一个未知数个未知数;未知数的最高次数是未知数的最高次数是2.2.即:一元二次方程即:一元二次方程的特点的特点:(默(默1)一般地一般地一般地一般地,任何一个关于任何一个关于任何一个关于任何一个关于x x 的一元二次方程都可以化为的一元二次方程都可以化为的一元二次方程都可以化为的一元二次方程都可以化为 的形式的形式的形式的形式,我们把我们把我们把我们把(a,b,ca,b,c为常数,为常数,为常数,为常数,a a0000)称为)称为)称为)称为一元二次方程的一般形式一元二次方程的一般形式一元二次方程的一般形式一元二次方程的一般形式.为什么要限制为什么要限制a a00,b,cb,c可以为零吗?可
4、以为零吗?可以为零吗?可以为零吗?a x 2+b x+c=0(a 0)b b是是一次项系数一次项系数一元二次方程的一元二次方程的一般一般形式形式 a a是二次项系数是二次项系数常数项常数项二次二次项项一次一次项项“=”的右边必的右边必须整理成须整理成0.0.(默(默2)ax2+bx=0(a0,b0)一元二次方一元二次方程的一般形式程的一般形式 ax2+bx+c=0 (a0)完全的一元二次方程完全的一元二次方程 ax2+bx+c=0 (a0,b0,c0)不完全的不完全的一元二次方程一元二次方程ax2+c=0(a0,c0)ax2=0 (a0)例例1 1:判断下列方程是否为一元二次方程?判断下列方程
5、是否为一元二次方程?(1)x2+x=36(2)x3+x2=36(3)x+3y=36(5)x+1=0 判断一个方程是否是一元二次方程,关键是要将方程判断一个方程是否是一元二次方程,关键是要将方程化为化为一般式一般式,然后根据一元二次方程必须同时满足的,然后根据一元二次方程必须同时满足的三个三个条件条件进行判别。进行判别。(默(默3)下列方程中哪些是一元二次方程?下列方程中哪些是一元二次方程?是一元二次方程的有:是一元二次方程的有:_可能为可能为0是分式是分式是二次是二次根式根式例题讲解例2 将下列方程化为一般形式,并分别指出它们将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们
6、的系数:的二次项、一次项和常数项及它们的系数:(1)例题讲解(2)解:解:二次项、二次项系数、一次项、一次项系数、常数二次项、二次项系数、一次项、一次项系数、常数项都是项都是包括符号包括符号的的 ax2+bx+c=0注意注意:要确定一元二次方程的系数和常数项要确定一元二次方程的系数和常数项,必必须先将方程化为一般形式须先将方程化为一般形式二次项系数二次项系数一次项系数一次项系数 常数项常数项(a0)在写一元二次方程的一般形式时在写一元二次方程的一般形式时,通常按未通常按未知数的知数的次数从高到低排列次数从高到低排列,即即先写先写二次项二次项,再写再写一次项一次项,最后是最后是常数项。常数项。例
7、例3.把下列方程化为一元二次方程的形式,并写出它的二次把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:项系数、一次项系数和常数项:方程方程一般形式一般形式二次项二次项系数系数一次项一次项系数系数常数项常数项3x2=5x-1(x+2)(x-1)=64-7x2=03x25x10 x2 x8035 111 835 11187x2 4070 4一元二次方程一元二次方程二次项二次项系数系数一次项一次项系数系数常数项常数项 42x2+x+4=021-4y2+2y=0-4203x2-x-1=03-1-1抢答:抢答:4x2-5=040-5m-31-m-m3x(x-1)=5(x+2)
8、(m-3)x2-(m-1)x-m=0(m3)3-8-10 方程方程(2a4)x2 2bx+a=0,在什么条件下此方程为在什么条件下此方程为一元二次一元二次方程?方程?在什么条件下此方程为在什么条件下此方程为一元一次一元一次方程?方程?解:解:由题意得,由题意得,2a2a4040,解之得,解之得a2a2当当a2时是一元二次方程;时是一元二次方程;2a2a4=0 a=24=0 a=2 2b0 2b0 b0由题意得,由题意得,解之得解之得当当a2且且b0时是一元一次方程时是一元一次方程.例例4:(默(默4)1.关于关于x的方程的方程(k3)x2 2x10,当当k时,是一元二次方程时,是一元二次方程2
9、.关于关于x的方程的方程(k21)x2 2(k1)x 2k 20,当当k 时,是一元二次方程时,是一元二次方程当当k 时,是一元一次方程时,是一元一次方程311练习巩固练习巩固 4.当m为何值时,方程 是关于x的一元二次方程.m=13.3.下列方程中下列方程中,无论无论a a为何值为何值,总是关于总是关于x x的一元二次方程的是的一元二次方程的是()()A.(2x-1)(xA.(2x-1)(x2 2+3)=2x+3)=2x2 2-a B.ax-a B.ax2 2+2x+4=0+2x+4=0 C.ax C.ax2 2+x=x+x=x2 2-1 D.(a-1 D.(a2 2+1)x+1)x2 2=
10、0=0D已知关于已知关于x的一元二次方程的一元二次方程(m1)x23x-5m40有一根为有一根为2,求求m.分析分析:一根为一根为2,即,即x2,只需把只需把x2代入原方程代入原方程.一元二次方程解的概念一元二次方程解的概念v方程解的定义是怎样的呢方程解的定义是怎样的呢?能使方程左右两边相等的未知数的值就叫方程的能使方程左右两边相等的未知数的值就叫方程的解解.一元二次方程的一元二次方程的解解也叫做一元二次方程也叫做一元二次方程根根.(默(默6)已知关于已知关于x x的一元二次方程的一元二次方程x x2 2+ax+a=0+ax+a=0的一个根的一个根是是3 3,求,求a a的值。的值。解:由题意
11、得解:由题意得把把x=3x=3代入方程代入方程x x2 2+ax+a=0+ax+a=0得,得,3 32 2+3+3a+a=0a+a=09+49+4a=0a=04 4a=a=-9-9练一练练一练6?A.1 B.-1 C.1A.1 B.-1 C.1或或-1 D.0-1 D.0B B看谁眼力好!先看是不是先看是不是整式方程,整式方程,然后整理看然后整理看是否符合另是否符合另外两个条件外两个条件1.本节学习的数学知识是:本节学习的数学知识是:2、学习的数学思想方法是、学习的数学思想方法是 3、如何理解一元二次方程的一般形式、如何理解一元二次方程的一般形式 (a0)?(1)(2)(1)(2)一元二次方程
12、的概念一元二次方程的概念一元二次方程的一般形式一元二次方程的一般形式 转化、建模思想。转化、建模思想。(a0)(a0)是成为一元二次方程的必要条件是成为一元二次方程的必要条件找一元二次方程的二次项、一次项找一元二次方程的二次项、一次项系数及常数项要先化为一般式系数及常数项要先化为一般式知识回顾知识回顾一、一元二次方程的概念一、一元二次方程的概念一般形式:一般形式:ax2+bx+c=0 (a0)对应练习对应练习1:1.将一元二次方程将一元二次方程(x-2)(2x+1)=3x2-5化为一般化为一般形式形式 .其中二次项系数其中二次项系数 ,常数项,常数项 .2.当当m 时,方程时,方程mx2-3x
13、=2x2-mx+2 是一元二是一元二次方程次方程.当当m 时,方程时,方程(m2-4)x2-(m+2)x-3=0是是一元一次方程一元一次方程.x2+3x-3=01-3221.下列方程中,关于下列方程中,关于x的一元二次方程是的一元二次方程是()A.B.C.D.A(1)三个特征:只含有一个未知数;)三个特征:只含有一个未知数;方程的两边都是整式;方程的两边都是整式;未知数的最高次数为未知数的最高次数为2次次.(2)形如)形如ax2+bx+c=0(a0)叫做一元二次方程)叫做一元二次方程.2.关于关于x的方程(的方程(a-1)x2-2x+3=0是一元二次方程,则是一元二次方程,则()A.a1 B.
14、a1 C.a=1 D.a1D3.方程(方程(m1)x2mx1=0为关于为关于x的的一元二次方程一元二次方程,则则m的值为的值为()A.任何实数任何实数 B.m0 C.m1 D.m0 且且m1C4.4.下列方程中下列方程中,无论无论a a为何值为何值,总是关于总是关于x x的一元二次方程的是的一元二次方程的是()()A.(2x-1)(xA.(2x-1)(x2 2+3)=2x+3)=2x2 2-a -a B.ax B.ax2 2+2x+4=0+2x+4=0 C.ax C.ax2 2+x=x+x=x2 2-1-1 D.(a D.(a2 2+1)x+1)x2 2=0=0D5、已知、已知x=2是一元二次
15、方程是一元二次方程 的一个解,则的一个解,则m=_。6、已知、已知 是方程是方程 的一个解,则的一个解,则 的的 值是值是_。-357、方程方程mx2+5x+m=0一定是(一定是()。)。(A)一元二次方程;一元二次方程;(B)一元一次方程一元一次方程;(C)整式方程整式方程;(D)关于关于x的一元二次方程的一元二次方程C 已知方程已知方程(m 2)(m 2)x 4 0(1)m为何值时它是一元二次方程?为何值时它是一元二次方程?(2)m为何值时它是一元一次方程?为何值时它是一元一次方程?分析:(分析:(1)由一元二次方程的一般形式,)由一元二次方程的一般形式,m2 2 2,故,故m 2 0,故
16、,故m2;(2)需分三种情况讨论:)需分三种情况讨论:m 2 0,此时,此时m 2;m2 2 1,此时,此时m ;显然显然x 0,故若,故若m2 2 0,则原方程也是一元一次方程,则原方程也是一元一次方程解:(解:(1)由)由m2 2 2,m 2 0得得m2;(2)分三种情况讨论:)分三种情况讨论:一一元元二二次次方方程程中中未未知知数数的的最最高高次次数数是是2,且且二二次次项系数不为项系数不为0。m 2 0,即即m 2时时,原方程为原方程为4x 4 0,是一元一次方,是一元一次方程;程;m2 2 1,即,即m 时,原方程为时,原方程为 2 x 4 0,是,是一元一次方程;一元一次方程;显然
17、显然x 0,否则有,否则有 4 0;故当;故当m2 2 0,即,即m 时,时,原方程为原方程为(2)x 6 0,也是一元一次方程。,也是一元一次方程。综上:当综上:当m2时,它是一元二次方程;当时,它是一元二次方程;当m 2,时,它是一元一次方程。时,它是一元一次方程。否则有4=0点拨:对于方程点拨:对于方程ax2 bx c 0(x为未知数为未知数),若,若a 0时,时,它是一元二次方程;当它是一元二次方程;当a 0,b 0时,它是一元一次时,它是一元一次方程。对于方程方程。对于方程axm bx c 0,当,当a 0,m 2时,它是时,它是一元二次方程;当一元二次方程;当a 0或或m 1或或m 0(此时必须(此时必须x 0)时,它是一元一次方程。)时,它是一元一次方程。1、(苏州)若、(苏州)若是关于的一元二次方程,则()是关于的一元二次方程,则()走进中考走进中考2、是关于的是关于的一元二次方程一元二次方程,则则m的值为的值为C(南京南京)变变式式一元一次方程一元一次方程A、p为任意实数为任意实数 B、p=0 C、p0 D、p=0或或1此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢