高考真题理科数学全国II卷.doc

上传人:z**** 文档编号:61142835 上传时间:2022-11-20 格式:DOC 页数:20 大小:712KB
返回 下载 相关 举报
高考真题理科数学全国II卷.doc_第1页
第1页 / 共20页
高考真题理科数学全国II卷.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《高考真题理科数学全国II卷.doc》由会员分享,可在线阅读,更多相关《高考真题理科数学全国II卷.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档理科数学 2017年高三2017年全国甲卷理科数学 理科数学考试时间:_分钟题型单项选择题填空题简答题总分得分单项选择题 本大题共12小题,每题_分,共_分。 1( )A. B. C. D. 2设集合,假设,那么( )A. B. C. D. 3我国古代数学名著?算法统宗?中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几灯?意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,那么塔的顶层共有灯( )A. 1盏B. 3盏C. 5盏D. 9盏4如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一

2、局部后所得,那么该几何体的体积为( )A. B. C. D. 5设,满足约束条件,那么的最小值是( )A. B. C. D. 6安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,那么不同的安排方式共有( )A. 12种B. 18种C. 24种D. 36种7甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,那么( )A. 乙可以知道四人的成绩B. 丁可以知道四人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩8执行右

3、面的程序框图,如果输入的,那么输出的( )A. 2B. 3C. 4D. 59假设双曲线,的一条渐近线被圆所截得的弦长为2,那么的离心率为( )A. 2B. C. D. 10直三棱柱中,那么异面直线与所成角的余弦值为( )A. B. C. D. 11假设是函数的极值点,那么的极小值为( )A. B. C. D. 112是边长为2的等边三角形,为平面内一点,那么的最小是( )A. B. C. D. 填空题 本大题共4小题,每题_分,共_分。 13一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,那么_14函数的最大值是_15等差数列的前项和为,那么_16是抛物

4、线的焦点,是上一点,的延长线交轴于点假设为的中点,那么_简答题综合题 本大题共7小题,每题_分,共_分。 1712分的内角的对边分别为,1求;2假设,的面积为,求1812分海水养殖场进行某水产品的新、旧网箱养殖方法的产量比照,收获时各随机抽取了100 个网箱,测量各箱水产品的产量单位:kg其频率分布直方图如下:1设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg,估计A的概率;2填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:3根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值精确到0.01附:,1

5、912分如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD, E是PD的中点1证明:直线平面PAB;2点M在棱PC 上,且直线BM与底面ABCD所成角为,求二面角的余弦值2012分设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足1求点P的轨迹方程;2设点Q在直线上,且证明:过点P且垂直于OQ的直线l过C的左焦点F2112分函数,且1求;2证明:存在唯一的极大值点,且所以22选考题:共10分请考生在第22、23题中任选一题作答如果多做,那么按所做的第一题计分选修44:坐标系与参数方程10分在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,

6、曲线的极坐标方程为1M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;2设点A的极坐标为,点B在曲线上,求面积的最大值23选考题:共10分请考生在第22、23题中任选一题作答如果多做,那么按所做的第一题计分选修45:不等式选讲10分证明:1;2答案单项选择题 1. D 2. C 3. B 4. B 5. A 6. D 7. D 8. B 9. A 10. C 11. A 12. B 填空题 13. 14. 115. 16. 6简答题 17. 1 218. 1 2见解析 319. 1见解析; 220. 1;2见解析21. 1;2见解析22. 1223. 1见解析2见解析解析

7、单项选择题 1. 由复数的除法运算法那么有:,应选D.2. 由得,即是方程的根,所以,应选C3. 设塔的顶层共有灯盏,那么各层的灯数构成一个首项为,公比为2的等比数列,结合等比数列的求和公式有:,解得,即塔的顶层共有灯3盏,应选B4. 由题意,其体积,其体积,故该组合体的体积应选B5. 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点处取得最小值,最小值为应选A.6. 由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有种方法,然后进行全排列,由乘法原理,不同的安排方式共有种 应选D7. 四人所知只有自己看到,老师所说及最后甲说的话甲不知自己成绩

8、乙、丙中必有一优一良,假设为两优,甲会知道自己成绩;两良亦然乙看了丙成绩,知自己成绩丁看甲,甲、丁中也为一优一良,丁知自己成绩8. 阅读程序框图,初始化数值循环结果执行如下:第一次:;第二次:;第三次:;第四次:;第五次:;第六次:;结束循环,输出应选B9. 取渐近线,化成一般式,圆心到直线距离为得,10. 如下图,补成直四棱柱,那么所求角为,易得,因此,应选C11. ,那么,那么,令,得或,当或时,当时,那么极小值为12. 如图,以为轴,的垂直平分线为轴,为坐标原点建立平面直角坐标系,那么,设,所以,所以,当时,所求的最小值为,应选B填空题 13. 由题意可得,抽到二等品的件数符合二项分布,

9、即,由二项分布的期望公式可得14. 化简三角函数的解析式,那么,由可得,当时,函数取得最大值115. 设首项为,公差为那么求得,那么,16. 如下图,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,那么,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故简答题 17. 1依题得:,2由可知,18. 1记:“旧养殖法的箱产量低于 为事件“新养殖法的箱产量不低于为事件而2由计算可得的观测值为有以上的把握产量的养殖方法有关3,中位数为19. 1令中点为,连结,为,中点,为的中位线,又,又,四边形为平行四边形,又,2取中点,连,由于为正三角形又平

10、面平面,平面平面平面,连,四边形为正方形。平面,平面平面而平面平面过作,垂足为,平面为与平面所成角,在中,设,在中,以为坐标原点,、分别为、轴建立空间直角坐标系,设平面的法向量为,而平面的法向量为设二面角的大角为为锐角20. 1设,设,由得因为在C上,所以因此点P的轨迹方程为2由题意知设,那么,由得,又由1知,故,所以,即又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F21. 1的定义域为设,那么等价于因为假设a=1,那么.当0x1时,单调递减;当x1时,0,单调递增.所以x=1是的极小值点,故综上, ,令,那么,令得,当时,单调递减;当时,单调递增所以,因为,所以在和上,即各有一个零点设在和上的零点分别为,因为在上单调减,所以当时,单调增;当时,单调减因此,是的极大值点因为,在上单调增,所以当时,单调减,时,单调增,因此是的极小值点所以,有唯一的极大值点由前面的证明可知,那么因为,所以,那么又,因为,所以因此,22. 设那么解得,化为直角坐标系方程为2设点B的极坐标为,由题设知,于是OAB面积当时,S取得最大值所以OAB面积的最大值为23. 12因为所以,因此.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁