《新人教版七年级数学上册教案全套-表格式.doc》由会员分享,可在线阅读,更多相关《新人教版七年级数学上册教案全套-表格式.doc(69页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优质文本 学 科 教 学 计 划2015-2016学年度上期 七 年级 2 班 学科 数学 执教教师 本 期 教 材 简 析 本期教材的知识结构、地位、教学目的、要求、重难点知识结构与地位:第一章 有理数 本章主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此根底上,介绍有理数的运算。第二章整式的加减 本章的主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等。第三章 一元一次方程 本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题。第四章 图形认识初步 这一章是义务教育第三学段
2、“空间与图形领域的起始章,让学生欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用。教学目标与要求:1、根本技能:能够按照一定的程序与骤进行运算、作图或画图,进行简单的推理。2、逻辑思维能力:会观察、比拟、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点,形成良好的思维品质。3、运算能力:不仅会根据法那么、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求合理、简捷的运算途径。4、分析问题和解决问题的能力:能够解决实际问题,是指解决带有实际意义的和相关学科中
3、的数学问题,以及解决生产和日常生活中的实际问题。在解决实际问题中,把实际问题抽象成数学问题,形成用数学的意识。重难点:重点:有理数的运算。以方程为工具分析问题、解决问题。如何结合立体图形与平面图形的互相转化的学习,来开展空间观念以及一些重要的概念、性质等。单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等难点:有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的根本过程,感受数学的应用价值,提高分析问题、解决问题的能力。对图形的表示方法,对几何语言的认识
4、与运用。能够分析实际问题中的数量关系,并用还有字母的式子表示出来学 生 知 识 现 状 解 析 从总体上看,学生的数学成绩较差,在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期;在学习习惯上,局部小学的不良习惯要得到纠正,良好的习惯要得到稳固,如独立思考,认真进行总结通过观察和了解,大局部学生对数学是很感兴趣的,但仍有局部学生对数学严重丧失信心,谈数学而色变,因此要给这局部学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活本 期 改 进 教 学 、 提高 教 学 质 量 的 措 施1、认真钻研教材,积极捕捉课改信息,尽力倡导自主
5、、合作、探究学习,努力培养学生的学习兴趣和个性品质。2、把握学生思想动态,及时与学生沟通,搞好师生关系。3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。4、改良教学方法,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的时机。5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中稳固提高,减少遗忘。教 学 进 度 计 划教 学 内 容章、节单元课题教参规定课时数方案需要课时数起止周次时 间备 注整数和负数23第一周有理数58第二、三周有理数的加减法48第三、四周有理数的乘除法79第五、六
6、周有理数的乘方46第八周整式35第九周整式的加减36第十周从算式到方程23第十一周解一元一次方程46第十一、二周实际问题与一元一次方程24第十三周几何图形36第十四周直线、射线、线段24第十五周角36第十六、七周备 课 情 况 检 查 情 况检查日期教学进度备课进度备课简况及等级检查人签 名任课教师签 名进 度第一章单元第1节课1 课时课型新课备课时间2015年9月1日课题内容1.1.1正数和负数1授课时间2015年9月2日教 学目 标1、整理前两个学段学过的整数、分数包括小数的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学开展的一个重要原因是生活
7、实际的需要,激发学生学习数学的兴趣。重 点难 点关 键重点:正确区分两种不同意义的量。难点:两种相反意义的量教 具多媒体教学课时及板书设计旁批设置情境引入课题:上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数够用了吗?下面的例子仅供参考 师:今天我们已经是七年级的学生了,我是你们的数学老师下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%问题1:老师刚刚的介绍中出现了几个数?分别是什么?你能将这些数按以前学
8、过的数的分类方法进行分类吗?学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数包括小数问题2:在生活中,仅有整数和分数够用了吗请同学们看书观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性并思考讨论,然后进行交流。也可以出示气象预报中的气温图,地图中表示地形上下地形图,工资卡中存取钱的记录页面等学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“的新数。分析问题探究新知: 问题3:前面带有“一号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解 教师可以用多媒体
9、出示这些问题,让学生带着这些问题看书自学,然后师生交流 这阶段主要是让学生学会正数和负数的表示强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量举一反三思维拓展:经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维 问题4:请同学们举出用正数和负数表示的例子 问题5:你是怎样理解“正整数“负整数,正分数和“负分数的呢?请举例说明课堂练习:教科书第3页练习课堂小结:围
10、绕下面两点,以师生共同交流的方式进行:1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数或在其前面加“,负数就是在以前学过的0以外的数前面加“。本课作业:教科书第5页习题1.1 第1,2,4,5第3题作为下节课的思考题。先回忆小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多 地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际 这个问题能激
11、发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定根底。课 后 心 得 密切联系生活实际,创设学习情境本课是有理数的第一节课时引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整其实是一次知识的顺应过程,而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的 负数的产生主要是因为原有的数不够用了不能正确简洁地表示数量,书本的例子或图片中出现的负数
12、就是让学生去感受和体验这一点使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数为了区分这两种相反意义的量就是顺理成章的事了 这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,表达了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。本期总第 1、2 课时进 度第一章单元第1节课2 课时课型新课备课时间2015年9月4日课题内容
13、1.1.2正数和负数2授课时间2015年9月5日教 学目 标1、通过对数“零的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量规定了指定方向变化的量3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。重 点难 点关 键教学重点:深化对正负数概念的理解。教学难点:正确理解和表示向指定方向变化的量。教 具多媒体教学课时及板书设计旁批知识回忆与深化:回忆:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示这就是说:数的范围扩大了数有正数和负数之
14、分那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢? 学生思考并讨论数0既不是正数又不是负数,是正数和负数的分界,是基准这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7,最低温度是零下5时,就应该表示为7和5,这里7和5就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?表示为0,它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引
15、入负数后,数按照“两种相反意义的量来分,可以分成几类?分析问题解决问题: 问题3:教科书第6页例题 说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长和“减少是两种相反意义的量,要求写出“体重的增长值和“进出口额的增长率,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义教科书第6页 类似的例子很多,如: 水位上升3m,实际表示什么意思呢? 收人增加10%,实际表示什么意思呢? 等等。可视教学中的实际情况进行补充
16、课堂练习: 教科书第4页练习课堂小结:以问题的形式,要求学生思考交流:1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2、怎样用正负数表示具有相反意义的量? 用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数本课作业: 必做题:教科书第5页习题1.1第3,6,7,8题 选做题:教师自行安排“数0耽不是正数,也不是负数也应看作是负数定义的一局部在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理
17、毅概念的建立都有帮助。 所举的例子,要考虑学生的可接受性“数0既不是正数,也不是负数应从相反意义的1这个角度来说明这个问题只要初步认识即可,不必深究课 后 心 得1、本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。2、“数0既不是正数,也不是负数,要从0不属于两种相反意义的量中的任何一种上来理解也应看作是负数定义的一局部在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回忆和深化而放
18、到本课 3、教科书的例子是用正负数表示向指定方向变化的量的实际应用,用这种方式描述的例子很多,要尽量使学生理解 4、本设计表达了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识通过实际例子的学习激发学生学习数学的兴趣本期总第 3、4 课时进 度第一章单元第2节课1 课时课型新课备课时间2015年9月5日课题内容1.2.1有理数授课时间2015年9月日教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合的含义;3、体验分类是数学上的常用处理问题的方法。重 点难
19、点关 键教学重点:正确理解分类的标准和按照一定的标准进行分类。教学难点:正确理解有理数的概念。教 具多媒体教学课时及板书设计旁批探索新知:在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数同时请3个同学在黑板上写出 问题1:观察黑板上的9个数,并给它们进行分类 学生思考讨论和交流分类的情况学生可能只给出很粗略的分类,如只分为“正数和“负数或“零三类,此时,教师应给予引导和鼓励例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?不可以所以它们是不同类型的数,数5是正数中整
20、个的数,我们就称它为“正整数,而5. 1不是整个的数,称为“正分数,由于小数可化为分数,以后把小数和分数都称为分数 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数, 按照书本的说法,得出“整数“分数和“有理数的概念 看书了解有理数名称的由来“统称是指“合起来总的名称的意思试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?是按照整数和分数来划分的练一练: 1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流 2、教科书第10页练习 此练习中出现了集合的
21、概念,可向学生作如下的说明 把一些数放在一起,就组成了一个数的集合,简称“数集,所有有理数组成的数集叫做有理数集类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集; 数集一般用圆圈或大括号表示,因为集合中的数是无限的,而此题中只填了所给的几个数,所以应该加上省略号 思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?创新探究:问题2:有理数可分为正数和负数两大类,对吗?为什么?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。负分数负整数正分数正整数正有理数负有理数零有理数课堂小结: 到现在为止我们学过的数都是有理数
22、圆周率除外,有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。本课作业: 1、必做题:教科书习题1.2第1题 2、教师自行准备分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会 这个分类可视学生的程度确定是否有必要教学。 应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明
23、,可以按年龄,也可以按性别、地域来分等。课 后 心 得1、本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的表达,教师在教学中应引起足够的重视关于分类标准与分类结果的关系,分类标准确实定可向学生作适当的渗透,集合的概念比拟抽象,学生真正接受需要很长的过程,本课不要过多展开。 2、本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可防止直接进行分类所带来的枯燥性;同时还表达合作学习、交流、探究提高的特点,对学生分类能力的养成有
24、很好的作用。 3、两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。本期总第 5、6课时进 度第一章单元第2节课2 课时课型新课备课时间2015年9月6日课题内容1.2.2 数轴授课时间2015年9月7日教 学目 标 1、掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。重 点难 点关 键数轴的概念和用数轴上的点表示有理数。教 具多媒体教学课时及板书设计旁批设置情境、引入课题:教师通过实例、课件演示得到温度计读数问题1:温度
25、计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?多媒体出示3幅图,三个温度分别为零上、零度和零下问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境 小组讨论,交流合作,动手操作合作交流、探究新知:教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的根底上动手操作,在操作的根底上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度从游戏中学习数学: 做游戏:教师
26、准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要答复“到;口令为该同学的名字时,该同学要报出他对应的“数字,如果规定第3个同学为原点,游戏还能进行吗?寻找规律归纳结论:问题3:1、你能举出一些在现实生活中用直线表示数的实际例子吗?2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4、每个数到原点的距离是多少?由此你会发现了什么规律?小
27、组讨论,交流归纳 归纳出一般结论,教科书第9的归纳。稳固练习: 教科书第9页练习课堂小结:请学生总结:1、数轴的三个要素; 2、数轴的作以及数与点的转化方法。本课作业: 1、必做题:教科书习题1.2第2题 2、选做题:教师自行安排创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。点表示数的理性认识。体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。 学生游戏体验,对数轴概念的理解这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。课 后 心 得 1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易
28、于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。 2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。 3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,开展与变化,培养学生自主探索的学习方法。本期总第 7、9 课时进 度第一章单元第2节课3 课时课型新课备课时间2015年9月8日课题内容1.2.3 相反数授课时间2015年9月9日教 学目 标 1、掌握相反数的概念
29、,进一步理解数轴上的点与数的对应关系;2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。重 点难 点关 键教学重点:归纳相反数在数轴上表示的点的特征。教学难点:相反数的概念。教 具多媒体教学课时及板书设计旁批设置情境引入课题:问题1:请将以下4个数分成两类,并说出为什么要这样分类1, 2,5,2 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和5,2和2分别归类是具有较特征的分法。 引导学生观察与原点的距离 思考结论:教科书第13页的思考 再换2个类似的数试一试。 归纳结论:教科书第13页的归纳。深化主题提炼定义: 给出相反
30、数的定义 问题2:你怎样理解相反数定义中的“只有符号不同和“互为一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。 规律:一般地,数a的相反数可以表示为a 思考:数轴上表示相反数的两个点和原点有什么关系? 练一练:教科书第10页第一个练习给出规律解决问题:问题3:5和5分别表示什么意思?你能化简它们吗?学生交流。分别表示5和5的相反数是5和5 练一练:教科书第10页第二个练习课堂小结:1、相反数的定义2、互为相反数的数在数轴上表示的点的特征 3、怎样求一个数的相反数?怎样表示一个数的相反数?本课作业: 1、必做题 教科书习题1.2第3题 2、选做题 教师自行安排 以开放的
31、形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想体验对称的图形的特点,为相反数在数轴上的特征做准备。 深化相反数的概念;“零的相反数是零是相反数定义的一局部。强化互为相反数的数在数轴上表示的点的几何意义.利用相反数的概念得出求一个数的相反数的方法。课 后 心 得 1、相反数的概念使有理数的各个运算法那么容易表述,也揭示了两个特殊数的特征这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想 2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力
32、;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法 3、本教学设计表达了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地本期总第 10、11课时进 度第一章单元第2节课4 课时课型新课备课时间2015年9月8日课题内容1.2.4 绝对值授课时间2015年9月9日教 学目 标1、掌握绝对值的概念,有理数大小比拟法那么2、学会绝对值的计算,会比拟两个或多个有理数的大小3、体验数
33、学的概念、法那么来自于实际生活,渗透数形结合和分类思想重 点难 点关 键教学重点:两个负数大小的比拟。教学难点:绝对值的概念。教 具多媒体教学课时及板书设计旁批设置情境引入课题:星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中学校、朱家尖、家在同一直线上,如果规定向东为正,用有理数表示黄老师两次所行的路程;如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生思考后,教师作如下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一
34、条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离 学生答复后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|10|=10显然,|0|=0合作交流探究新知: 例1求以下各数的绝对值,并归纳求有理数a的绝对有什么规律? 3,5,0,58,0.6 要求小组讨论,合作学习 教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝
35、对值法那么见教科书第15页 稳固练习:教科书第15页练习 其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进行区分,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别结合实际发现新知:引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序
36、就是从小到大的顺序,即左边的数小于右边的数在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离即它们的绝对值以及这两个数的大小之间的关系要求学生在头脑中有清晰的图形课堂练习:例2,比拟以下各数的大小教科书第13页例比拟大小的过程要紧扣法那么进行,注意书写格式 练习:第13页练习课堂小结: 怎样求一个数的绝对值,怎样比拟有理数的大小?本课作业: 1、必做题:教科书习题1,2,第4,5,6,10 2、选做题:教师自行安排 这个例子中,第一问是相反意义的量,用正负数表示
37、,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义为引入绝对值概念做准备并使学生体 验数学知识与生活实际的联系 因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例学生能做的尽量让学生完成,教师在教学过程中只是组织者本着这个理念,设计这个讨论课 后 心 得 1、情景的创设出于如下考虑:表达数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值
38、概念的必要性和激发学习的兴趣教材中数的绝对值概念是根据几何意义来定义的其本质是将数转化为形来解释,是难点,然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受 2、一个数绝对值的法那么,实际上是绝对值概念的直接应用,也表达着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的开展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。 3、有理数大小的比拟法那么是大小规定的直接归纳,其中第2条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴
39、上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型为此设置了想象练习 4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比拟的法那么,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比拟移到下节课教学。本期总第 12、13 课时进 度第一章单元第3节课21课时课型新课备课时间2015年9月10日课题内容 1.3.1 有理数的加法一授课时间2015年9月11日教 学目 标1、在现实背景中理解有理数加法的意义2、经历探索有理数加法法那么的过程,理解有理数的加法法那么3、能积极地参与探究有理数加
40、法法那么的活动,并学会与他人交流合作4、能较为熟练地进行有理数的加法运算,并能解决简单的实际间题5、在教学中适当渗透分类讨论思想重 点难 点关 键教学重点:异号两数相加。教学难点:和的符号确实定。教 具多媒体教学课时及板书设计旁批设置情境引入课题:回忆用正负数表示数量的实际例子;在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数假设红队进4个球,失2个球,那么红队的胜球数,可以怎样表示?蓝队的胜球数呢? 师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题出示课题分析问题探究新知:如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜
41、球是几个呢?算式应该怎么列?假设这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢? 学生思考答复思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况 借助数轴来讨论有理数的加法I 一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作5 m. 1小组合作把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义 2交流汇报对学习小组的汇报结果
42、,数轴用实物投影仪展示,算式由教师写在黑板上3说一说有理数相加应注意什么?符号,绝对值能用自己的语言归纳如何相加吗? 4在学生归纳的根底上,教师出示有理数加法法那么 有理数加法法那么: 1、同号两数相加,取相同的符号,并把绝对值相加 2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去小的绝对值,互为相反数的两个数相加得0 3、一个数同。相加,仍得这个数解决问题: 例1 计算: 13-9; 2513; 30十7; 4-4.73.9. 教师板演,让学生说出每一步运算所依据的法那么请同学们比拟,有理数的加法运算与小学时候学的加法有什么异同?如:有理数加法计算中要注意符号,和不一定大于加数等等例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数 让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书 学生活动:请学生说一说在生活中用到有理数加法的例子。课堂练习: 教科书第18页练习课堂小结: 通过这节课的学习,你有哪些收获,学生自己总结。本课作业: 必做题:教科书习题1.3第1、12、第13题。让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣 再次创设足球比赛情境,一方面与引题相照应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将