《物理奥赛辅导:第6讲万有引力和天体运动.doc》由会员分享,可在线阅读,更多相关《物理奥赛辅导:第6讲万有引力和天体运动.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优质文本 第六讲 万有引力和天体运动一、知识点击1开普勒定律第一定律轨道定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动。太阳是在这些椭圆的一个焦点上。第二定律面积定律:对每个行星来说,太阳和行星的连线叫矢径在相等的时间内扫过相等的面积。“面积速度: 为矢径r与速度的夹角 第三定律周期定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值相等。即:2万有引力定律万有引力定律:自然界中任何两个物体都是相互吸引的任何两个质点之间引力的大小跟这两个质点的质量的乘积成正比,跟它们的距离的二次方成反比 , ,称为引力常量 重力加速度的根本计算方法 设M为地球的质量,g为地球外表的重力加速度
2、在地球外表附近 处:, 在地球上空距地心r=R+h处:, 在地球内部跟离地心r处:, , 3行星运动的能量 行星的动能 当一颗质量为m的行星以速度 绕着质量为M的恒星做平径为r的圆周运动: ,式中。 行星的势能对质量分别为M和m的两孤立星系,取无穷远处为万有引力势能零点,当m与M相距r时,其体系的引力势能: 行星的机械能:4宇宙速度和引力场宇宙速度相对地球 第一宇宙速度:环绕地球运动的速度环绕速度 第二宇宙速度:人造天体发射到地球引力作用以外的最小速度脱离速度第三宇宙速度:使人造天体脱离太阳引力范围的最小速度逃逸速度引力场、引力半径与宇宙半径对于任何一个质量为M,半径为r的均匀球形体系都有类似
3、于地球情况下的这两个特征速度如果第二宇宙速度超过光速,即,那么有关系在这种物体上,即使发射光也不能克服引力作用,最终一定要落回此物体上来,这就是牛顿理论的结论,近代理论有类似的结论,这种根本发不了光的物体,被称为黑洞,这个临界的r值被称为引力半径,记为用地球质量代入,得到rg0.9 cm,设想地球全部质量缩小到1 cm以下的小球内,那么外界就得不到这个地球的任何光信息如果物质均匀分布于一个半径为r的球体内,密度为,那么总质量为又假设半径r正好是引力半径,那么,得此式表示所设环境中光不可能发射到超出rg的范围,联想起宇宙环境的质量密度平均值为10-29g/cm3,这等于说,我们不可能把光发射到1
4、028cm以外的空洞,这个尺度称为宇宙半径二、方法演练类型一、天体运动中一类应用开普勒定律的问题,解这类问题时一定要注意运动的轨道、面积、周期,但三者之间也是有关联的,正因为如此,解题时要特别注意“面积速度。例1要发射一艘探测太阳的宇宙飞船,使其具有与地球相等的绕日运动周期,以便发射一年后又将与地球相遇而发回探测资料。在地球发射这一艘飞船时,应使其具有多大的绕日速度?分析与解:如示61所示,圆为地球绕日轨道,椭圆为所发射飞船的绕日轨道,S点太阳为此椭圆的一个焦点,因飞船与地球具有相等的绕日周期,由开普勒周期定律:可知椭圆的半长轴a=R,两轨道的交点必为半轴顶点,发射飞船时,绕日速度应沿轨道切线
5、方向,即与椭圆长轴平行的方向那么飞船的“面积速度为:,地球的“面积速度为:,故: 当绕日速度的方向不同时,其轨道的短轴b不同,但长半轴R相同,太阳为椭圆轨道的一个焦点,且发射的绕日速度大小相同例2一物体A由离地面很远处向地球下落,落至地面上时,其速度恰好等于第一宇宙速度地球半径R=6400 km.假设不计物体在运动中所受到的阻力,求此物体在空中运动的时间。分析和解:物体落至地面时其速度值为第一宇宙速度值,即:上式中R为地球半径,g为地球外表处的重力加速度。设A最初离地心的距离为r,那么由其下落过程中机械能守恒,应有:且GM=gR2联立上三式可解得:r=2R物体在中心天体引力作用下做直线运动时,
6、其速度、加速度是变化的,可以将它看绕中心天体的椭圆轨道运动,将其短轴取无限小。这就是我们通常所说的“轨道极限化。物体A下落可以看成是沿着很狭长的椭圆轨道运行,其焦点非常接近此椭圆轨道长轴的两端,如图62所示,那么由开普勒第一定律,得知地心为椭圆的一个焦点那么椭圆长半轴为 a=R又由开普勒第三定律,物体沿椭圆轨道运行的周期和沿绕地心轨道不计为R的圆轨道运行的周期相等其周期为:再由开普勒第二定律得:, 类型二、天体质量密度的计算问题往往是由万有引力定律和向心力公式建立天体计算的根本方程,解题时一般要注意中心天体与运动卫星关系的建立,同时还要注意忽略微小量次要因数的问题,这是解决这类问题的两个非常重
7、要的因数。例3新发现一行星,其星球半径为6400 km,且由通常的水形成的海洋覆盖它所有的外表,海洋的深度为10 km,学者们对该行星进行探查时发现,当把试验样品浸入行星海洋的不同深度时,各处的自由落体加速度以相当高的精确度保持不变试求此行星外表处的自由落体加速度万有引力常量G=6. 6710-11N m2/ kg2。分析和解:解此题的关键就在于首先要建立中心天体和运动卫星,才能运用根本方程式求行星外表处的自由落体加速度,假设把水视为运动卫星群,那么关键是如何求中心天体的质量。以R表示此星球的半径,M表示其质量,h表示其外表层海洋的深度,R0表示除海洋外星球内层的半径,r表示海洋内任一点到星球
8、中心的距离那么:,且,以水表示水的密度那么此星球外表海洋水的总质量为因Rh,略去h高次项,得由,依题意:,即:,那么将G6. 6710-11N m2/kg2,水10103kg/m3,R6.4 106 m代入得:g表=2. 7 m/s2。类型三、天体运动的能量问题要注意在轨运行的卫星的机械能,然后利用机械能的改变及功能原理来解题,这是因为卫星的运行轨道变化既要注意其变轨机理,又要符合能量原理。例4质量为m的人造地球卫星,在圆形轨道上运行运行中受到大小恒为的微弱阻力作用,以r表示卫星轨道的平均半径,M表示地球质量,求卫星在旋转一周的过程中:1轨道半径的改变量r=?2卫星动能的改变量Ek=?分析和解
9、:因卫星沿圆形轨道运动,那么,那么,那么卫星的机械能为(1) 设卫星旋转一周轨道半径改变量为r,那么对应机械能改变量为,根据功能原理:W=E,即,负号表示轨道半径减小。2卫星动能的改变量为:类型四、天体运动的宇宙速度问题实质上就是两个问题:一个是摆脱引力场所需要的能量的问题;一个是能量的来源问题。而能量要么来源于燃料,要么来源于碰撞。例5宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小很多,飞行器的速率为,小行星的轨道半径为飞行器轨道半径的6倍。有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:当飞行器在其圆周轨道的适当位置时,突然点燃飞
10、行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;小行星与飞行器的碰撞是弹性正碰。不计燃烧的燃料质量1试通过计算证明按上述方案能使飞行器飞出太阳系2设在上述方案中,飞行器从发动机取得的能量为E1如果不采取上述方案而令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系采用这种方法时飞行器从发动机取得的能量的最小值用E2表示问为多少?分析和解:(1)设太
11、阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R。根据所设计的方案,可知飞行器是从其原来的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的该椭圆既与飞行器原来的圆轨道相切,又与小行星的圆轨道相切要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短时间内,由变为某一值u0设飞行器沿椭圆轨道到达小行星轨道时的速度为u,因为大小为u0和u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律可得u0 R= 6 Ur 1由能量关系,有 2由万有引力定律,有,或 3解123三式得 4, 5设小行星绕太阳运动的速度为V,小行星的质量为M,由万有引力定律,得 6可以看出Vu
12、 7由此可见,只要选择好飞行器在圆轨道上适宜的位置离开圆轨道,使得它到达小行星轨道处时,小行星的前缘也正好运动到该处,那么飞行器就能被小行星撞击。可以把小行星看作是相对静止的,飞行器以相对速度 射向小行星,由于小行星的的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速度弹回,即碰撞后,飞行器对小行星的速度的大小为,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为或将56式代入得 8如果飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,那么有得 9可以看出 10飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系(2) 为使飞行器能进人椭圆轨道,发动机应使飞行器的速度由增
13、加到u0,飞行器从发动机取得的能量(3) 11假设飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有最小速度为u3,那么有由此得 12飞行器的速度由增加到u3,应从发动机获取的能量为 13所以 14类型五、天体运动的宇宙速度问题实质上就是两个问题:一个是摆脱引力场所需要的能量的问题;一个是能量的来源问题。而能量要么来源于燃料,要么来源于碰撞。例7经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体构成,其中每个星体的线度都远小于两星之间的距离,一般双星系统距离其他星体很远,可以当作孤立系统处理,
14、现根据对某一双星系统的光度学测量确定,该星系统中每个星体的质量M,两者相距L,它们正围绕两者连线的中点作圆周运动1试计算该双星系统的运动周期T计算;2假设实验上观测到的运动周期为T观测,,且T观测T计算=1Nl,为了解释T观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗 物质,作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均这种暗物质,而不考虑其他暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度解.1双星均绕它们的连线的中点作圆周运动,设运动速度为,向心加速度满淀下面的方程 周期 (2根据观测结果,星体的运动周期 这说明双星
15、系统中受到的向心力大于本身的引力,故它一定还受到其他指向中心的作用力,按题意,这一作用来源于均匀分布的暗物质,均匀分布在球体内的暗物质对双星系统的作用与一质量等于球内暗物质的总质量M、位于中点处的质点相同,考虑暗物质作用后双星的速度即为观察到的速度,现有 因为在轨道一定时,周期和速度成反比,由式得 把式代入式得 设所求暗物质的密度为,那么有故 三、小试身手1质量为m的人造地球卫星,绕半径为r0的圆轨道飞行,地球质量为M,试求1卫星的总机械能2假设卫星受微弱摩擦阻力(常量),那么将缓慢地沿一螺旋轨道接近地球,因很小,轨道半例径变化非常缓慢,每周旋转可近似按半径为r的圆轨道处理,但r将逐周缩短,在
16、r轨道上旋转一周r的改变量r是多少3在r轨道上旋转一周卫星动能的改变量是多少2一个飞行器被发射到一个围饶太阳的椭圆轨道上,以地球轨道为近日点,而以火星轨道为远日点,如图63所示,地球至太阳的距离为R1,火星至太阳的距离为R21求轨道方程的参数和值;2利用开普勒第三定律计算沿此轨道到达火星轨道所需时间3地球m绕太阳M固定作椭圆运动,轨道半长轴为A,半短轴为B,如图6一4所示,试求地球在椭圆各顶点1、2、3的运动速度的大小及其曲率半径4要发射一颗人造地球卫星,使它在半径为r2的预定轨道上绕地球作匀速圆周运动,为此先将卫星发射到半径为r1的近地暂行轨道上绕地球作匀速圆周运动。如图65所示,在A点,实
17、际使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A点到达B点所需的时间,设万有引力恒量为G,地球质量为M5宇宙飞船在距火星外表H高度处作匀速圆周运动,火星半径为R,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的倍,因量很小,所以飞船新轨道不会与火星外表交会如图6一6,飞船喷气质量可忽略不计1试求飞船新轨道的近火星点的高度和远火星点高度,2设飞船原来的运动速度,试计算新轨道的运行周期T.6质量为m的登月器连接在质量为M=2m的航天飞机上一起绕月球作圆周运动,其轨道半径是月球半径Rm的
18、3倍,某一时刻,将登月器相对航天飞机向运动反方向射出后,登月器仍沿原方向运动,并沿图6一7所示的椭圆轨道登上月球外表,在月球外表逗留一段时间后,经快速发动沿原椭圆轨道回到脱离点与航天飞机实现对接,试求登月器在月球外表可逗留多长时间?月球外表的重力加速度为gm=1.62m/s2,月球的半径。7从赤道上的C点发射洲际导弹,使之精确地击中北极点N,要求发射所用的能量最少.假定地球是一质量均匀分布的半径为R的球体,R=6400km.质量为m的物体在地球引力作用下作椭圆运动时,其能量E与椭圆半长轴a的关系为式中M为地球质量,G为引力常量. 1假定地球没有自转,求最小发射速度的大小和方向(用速度方向与从地
19、心O到发射点C的连线之间的夹角表示).2假设考虑地球的自转,那么最小发射速度的大小为多少?3试导出.参考解答1解:1因人造地球卫星沿圆形轨道运动,那么,那么,那么卫星的机械能为(2) 设卫星旋转一周轨道半径改变量为r,那么对应机械能改变量为,根据功能原理:W=E,即,负号表示轨道半径减小。3卫星动能的改变量为:2解:1在近日点处,椭圆轨道方程中的=0,即 在远日点处即 均式解得:,2根据开普勒第三定律,常数地球绕太阳的运行周期T1=1年,设飞行器运行的周期为T,那么即因此该飞行器沿此轨道运行到火星轨道所需时间为。3解:对顶点1、2,由机械能守恒定律有 根据开普勒第二定律有 式中由式解得由万有引
20、力提供向心力得 解得对顶点3,由机械能守恒得将代入得同样可得4解:以V表示卫星的速度,当卫星在暂行轨道上经过近地点A和远地点B时V与r垂直,根据并普勒第二定律,有卫星在暂行轨道上总机械能守恒,解得,卫星的面积速度为椭圆的面积为,其中,因此周期为从A到B点所需时间t为5解:设火星和飞船的质量分别为M和m,飞船沿椭圆轨道运行时,飞船在最近点或最远点与火星中心的距离为r,飞船速度为因飞船喷气前绕圆轨道的面积速度为。等于喷气后飞船绕椭圆轨道在P点的面积速度P点为圆和椭圆的交点,由开普勒第二定律,后者又应等于飞船在近、远火星点的面积速度,故,即由机械能守恒定律有飞船沿原圆轨道运动时,有式中,r=Rh上述
21、三个方程消去G、M、后可解得关于r的方程为上式有两个解,大者为,小者为,故近、远火星点距火星外表的高度为 ,(2)设椭圆轨道的半长轴为 ,即飞船喷气前绕圆轨道运行的周期为,设飞船喷气后,绕椭圆轨道运行的周期为T,由开普勒第三定律有故,即。6解:设脱离前登月器与航天飞机一起绕月球运动的速度为V0,有,得其运动周期 式中Mm为月球的质量,而月球外表的重力加速度,故因而式中设登月器与航天飞机脱离后两者的的速度分别为V1和V2,由动量守恒可得 此后两者沿不同的椭圆轨道运动,设登月器运动到月球外表时的速度为,那么由机械能守恒得 由开普勒第二定律 由可得, 将代入得, 设航天飞机运动到离月球最远处与月球的
22、距离为,速度为,同样可得类似于式的方程 由式可解得故航天飞机运动轨道的半长轴为 由题意知,登月器为能沿原轨道返回脱离点与航天飞机实现对接,那么它在月球上可逗留的时间应是 式中与分别为航天飞机与登月器运动周期,由开普勒第三定律,得,将两式代入式,得 上式即为登月器在月球外表可逗留的时间,最短时间为11.5 h.7解:1这是一个大尺度运动,导弹发射后,在地球引力作用下将沿椭圆轨道运动.如果导弹能打到N点,那么此椭圆一定位于过地心O、北极点N和赤道上的发射点C组成的平面(此平面是C点所在的子午面)内,因此导弹的发射速度(初速度v)必须也在此平面内,地心O是椭圆的一个焦点.根据对称性,注意到椭圆上的C
23、、N两点到焦点O的距离相等,故所考察椭圆的长轴是过O点垂直CN的直线,即图上的直线AB,椭圆的另一焦点必在AB上.质量为m的物体在质量为M的地球的引力作用下作椭圆运动时,物体和地球构成的系统的能量E(无穷远作为引力势能的零点)与椭圆半长轴a的关系为 (1)要求发射的能量最少,即要求椭圆的半长轴a最短.根据椭圆的几何性质可知,椭圆的两焦点到椭圆上任一点的距离之和为2a,现C点到一个焦点O的距离是定值,等于地球的半径R,只要位于长轴上的另一焦点到C的距离最小,该椭圆的半长轴就最小.显然,当另一焦点位于C到AB的垂线的垂足处时,C到该焦点的距离必最小.由几何关系可知(2)设发射时导弹的速度为v,那么
24、有 (3)解(1)、(2)、(3)式得(4)因(5)比拟(4)、(5)两式得(6)代入有关数据得(7)速度的方向在C点与椭圆轨道相切.根据解析几何知识,过椭圆上一点的切线的垂直线,平分两焦点到该点连线的夹角OCP.从图中可看出,速度方向与OC的夹角 (8)2由于地球绕通过ON的轴自转,在赤道上C点相对地心的速度为 (9)式中R是地球的半径,T为地球自转的周期,T=243600s=86400s,故(10)C点速度的方向垂直于子午面(图中纸面).位于赤道上C点的导弹发射前也有与子午面垂直的速度,为使导弹相对于地心速度位于子午面内,且满足(7)、(8)两式的要求,导弹相对于地面(C点)的发射速度应有一大小等于、方向与相反的分速度,以使导弹在此方向相对于地心的速度为零,导弹的速度的大小为 (11)代入有关数据得(12)它在赤道面内的分速度与相反,它在子午面内的分速度满足(7)、(8)两式. 3质量为m的质点在地球引力作用下的运动服从机械能守恒定律和开普勒定律,故对于近地点和远地点有以下关系式(13)(14)式中、分别为物体在远地点和近地点的速度,r1、r2为远地点和近地点到地心的距离.将(14)式中的代入(13)式,经整理得(15)注意到r1+r2=2a(16)得(17)因(18)由(16)、(17)、(18)式得(19)- 21 - / 21