大学物理(振动波动学知识点总结)上课讲义.ppt

上传人:豆**** 文档编号:60594197 上传时间:2022-11-17 格式:PPT 页数:38 大小:1.57MB
返回 下载 相关 举报
大学物理(振动波动学知识点总结)上课讲义.ppt_第1页
第1页 / 共38页
大学物理(振动波动学知识点总结)上课讲义.ppt_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《大学物理(振动波动学知识点总结)上课讲义.ppt》由会员分享,可在线阅读,更多相关《大学物理(振动波动学知识点总结)上课讲义.ppt(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、大学物理(振动波动学知识点总结)第九章第九章第九章第九章 机械振动与机械波机械振动与机械波机械振动与机械波机械振动与机械波机械振动机械振动简谐振动简谐振动的特征的特征简谐振动简谐振动的描述的描述简谐振动简谐振动的合成的合成阻尼振动阻尼振动受迫振动受迫振动简谐振动简谐振动机械波机械波机械波的机械波的产生产生机械波的机械波的描述描述波动过程中波动过程中能量的传播能量的传播波在介质中波在介质中的传播规律的传播规律1.1.同方向、同频率的简谐振动的合成同方向、同频率的简谐振动的合成:简谐振动的合成简谐振动的合成驱动力作正功驱动力作正功=阻尼力阻尼力作负功作负功逐渐耗尽逐渐耗尽守恒守恒能能 量量振动曲线

2、振动曲线先变化后稳定。先变化后稳定。逐渐减小逐渐减小振振 幅幅频频 率率受受 力力受受 迫迫 振振 动动阻尼振动阻尼振动简谐振动简谐振动 运动形式运动形式阻尼振动阻尼振动 受迫振动受迫振动速度共振速度共振位移共振位移共振机械波的产生机械波的产生1、产生的条件:、产生的条件:波源及弹性媒质。波源及弹性媒质。2、分类:横波、纵波。、分类:横波、纵波。3、描述波动的物理量:、描述波动的物理量:波长波长 :在同一波线上两个相邻的相位差为在同一波线上两个相邻的相位差为2 的质元的质元 之间的距离。之间的距离。周期周期T:波前进一个波长的距离所需的时间。:波前进一个波长的距离所需的时间。频率频率 :单位时

3、间内通过介质中某点的完整波的数目。:单位时间内通过介质中某点的完整波的数目。波速波速u:波在介质中的传播速度为波速。波在介质中的传播速度为波速。各物理量间的关系:各物理量间的关系:波速波速u:决定于媒质。决定于媒质。仅由波源决定,与媒质无关。仅由波源决定,与媒质无关。机械波的描述机械波的描述波前波前波面波面波线波线波波线线波波前前波波面面1、几何描述:、几何描述:2、解析描述:、解析描述:1)能量密度:)能量密度:3)能流密度能流密度(波的强度波的强度):2)平均能量密度:)平均能量密度:基本原理:传播独立性原理,波的叠加原理。基本原理:传播独立性原理,波的叠加原理。波动过程中能量的传播波动过

4、程中能量的传播波在介质中的传播规律波在介质中的传播规律1)相干条件:频率相同、振动方向相同、相位差恒定)相干条件:频率相同、振动方向相同、相位差恒定波的干涉波的干涉现象:波的反射(波疏媒质现象:波的反射(波疏媒质 波密媒质波密媒质 界面处存在界面处存在半波损失半波损失)干涉减弱:干涉减弱:2)加强与减弱的条件:)加强与减弱的条件:干涉加强:干涉加强:3)驻波(干涉特例)驻波(干涉特例)波节:振幅为零的点波节:振幅为零的点波腹:振幅最大的点波腹:振幅最大的点能量不传播能量不传播多普勒效应:多普勒效应:(以媒质为参考系以媒质为参考系)1)S 静止,静止,R 运动运动2)S 运动,运动,R 静止静止

5、一般运动:一般运动:习题类别习题类别:振动:振动:1、简谐振动的判定。(动力学)、简谐振动的判定。(动力学)(质点:牛顿运动定律。刚体:转动定律。)(质点:牛顿运动定律。刚体:转动定律。)2、振动方程的求法。振动方程的求法。由已知条件求方程由已知条件求方程由振动曲线求方程。由振动曲线求方程。3、简谐振动的合成。、简谐振动的合成。波动:波动:1、求波函数(波动方程)求波函数(波动方程)。由已知条件求方程由已知条件求方程由振动曲线求方程。由振动曲线求方程。由波动曲线求方程。由波动曲线求方程。2、波的干涉(含驻波)。、波的干涉(含驻波)。3、波的能量的求法。、波的能量的求法。4、多普勒效应。、多普勒

6、效应。相位、相位差和初相位的求法:相位、相位差和初相位的求法:解析法解析法和和旋转矢量法旋转矢量法。1、由已知的初条件求初相位:、由已知的初条件求初相位:已知初速度的大小、正负以及初位置的正负。已知初速度的大小、正负以及初位置的正负。已知初位置的大小、正负以及初速度的正负。已知初位置的大小、正负以及初速度的正负。例例1已知某质点振动的初位置已知某质点振动的初位置 。例例2已知某质点初速度已知某质点初速度 。2、已知某质点的振动曲线求初相位:、已知某质点的振动曲线求初相位:已知初位置的大小、正负以及初速度的大小。已知初位置的大小、正负以及初速度的大小。例例3已知某质点振动的初位置已知某质点振动的

7、初位置 。注意!注意!由已知的初条件确定初相位时,不能仅由一个初始由已知的初条件确定初相位时,不能仅由一个初始 条件确定初相位。条件确定初相位。若已知某质点的振动曲线,则由曲线可看出,若已知某质点的振动曲线,则由曲线可看出,t=0 时刻质点振动的初位置的大小和正负及初速度的正负。时刻质点振动的初位置的大小和正负及初速度的正负。关键:关键:确定振动初速度的正负确定振动初速度的正负。考虑斜率。考虑斜率。例例4 一列平面简谐波中某质元的振动曲线如图。一列平面简谐波中某质元的振动曲线如图。求:求:1)该质元的振动初相。)该质元的振动初相。2)该质元在态)该质元在态A、B 时的振动相位分别是多少?时的振

8、动相位分别是多少?2)由图知)由图知A、B 点的振动状态为:点的振动状态为:由旋转矢量法知:由旋转矢量法知:解:解:1)由图知初始条件为:)由图知初始条件为:由旋转矢量法知:由旋转矢量法知:3、已知波形曲线求某点处质元振动的初相位:、已知波形曲线求某点处质元振动的初相位:若已知某时刻若已知某时刻 t 的波形曲线求某点处质元振动的初相的波形曲线求某点处质元振动的初相位,则需从波形曲线中找出该质元的振动位移位,则需从波形曲线中找出该质元的振动位移 y0 的大小的大小和正负及速度的正负。和正负及速度的正负。关键:关键:确定振动速度的正负。确定振动速度的正负。方法:由波的传播方向,确定比该质方法:由波

9、的传播方向,确定比该质 元先振动的相邻质元的位移元先振动的相邻质元的位移 y 。比较比较y0 和和 y。由图知:由图知:对于对于1:对于对于2:思考思考?若传播方向相反若传播方向相反 时振动方向如何?时振动方向如何?例例5一列平面简谐波某时刻的波动曲线如图。一列平面简谐波某时刻的波动曲线如图。求:求:1)该波线上点)该波线上点A及及B 处对应质元的振动相位。处对应质元的振动相位。2)若波形图对应)若波形图对应t=0 时,点时,点A处对应质元的振动初相位。处对应质元的振动初相位。3)若波形图对应)若波形图对应t=T/4 时,点时,点A处对应质元的振动初相位。处对应质元的振动初相位。解:解:1)由

10、图知)由图知A、B 点的振动状态为:点的振动状态为:由旋转矢量法知:由旋转矢量法知:2 2)若波形图对应)若波形图对应t=0 时,时,点点A 处对应质元的振动初相位:处对应质元的振动初相位:3 3)若波形图对应)若波形图对应t=T/4 时,点时,点A处对应质元的振动初相位:处对应质元的振动初相位:求振动方程和波动方程(1)写出)写出x=0处质点振动方程;处质点振动方程;(2)写出波的表达式;)写出波的表达式;(3)画出)画出t=1s时的波形。时的波形。例例1.一简谐波沿一简谐波沿x轴正向传播,轴正向传播,=4m,T=4s,x=0处振动曲线如图:处振动曲线如图:解:解:解:解:1)由题意知:)由

11、题意知:传播方向向左。传播方向向左。设波动方程为:设波动方程为:由旋转矢量法知:由旋转矢量法知:2)例例2 一平面简谐波在一平面简谐波在 t=0 时刻的波形图,设此简谐波的频率时刻的波形图,设此简谐波的频率 为为250Hz,且此时质点且此时质点P 的运动方向向下的运动方向向下,。求:求:1)该波的波动方程;)该波的波动方程;2)在距)在距O点为点为100m处质点的振动方程与振动速度表达式。处质点的振动方程与振动速度表达式。例例3 位于位于 A,B两点的两个波源两点的两个波源,振幅相等振幅相等,频率都是频率都是100赫兹,赫兹,相位差为相位差为,其其A,B相距相距30米,波速为米,波速为400米

12、米/秒,求秒,求:A,B 连线之连线之间因干涉而静止各点的位置。间因干涉而静止各点的位置。解:取解:取A点为坐标原点,点为坐标原点,A、B联线为联线为x轴,取轴,取A点的振动方程点的振动方程:在在x轴上轴上A点发出的行波方程:点发出的行波方程:B点的振动方程点的振动方程:在在x轴上轴上B点发出的行波方程:点发出的行波方程:因为两波同频率同振幅同方向振动因为两波同频率同振幅同方向振动,所以相干为静止的点满足:所以相干为静止的点满足:相干相消的点需满足:相干相消的点需满足:可见在可见在A、B两点是波腹处。两点是波腹处。则有:则有:解解:设入射波的波函数为设入射波的波函数为:合振动为:合振动为:例题

13、例题4:如图,一平面简谐波沿:如图,一平面简谐波沿ox轴正向传播,轴正向传播,BC为波密媒质为波密媒质的反射面,波由的反射面,波由P点反射,点反射,OP=3/4,DP=/6.在在t=0时点时点O处的处的质点的合振动是经过平衡位置向负方向运动。求点质点的合振动是经过平衡位置向负方向运动。求点D处入射波处入射波与反射波的合振动方程(设振幅都为与反射波的合振动方程(设振幅都为A,频率都为频率都为)。)。入射入射反射反射将将D点的坐标代入上式,有点的坐标代入上式,有所以有所以有故有故有:又由又由例例5.设设入射波的表达式入射波的表达式为为 反射点反射点为为一固定端一固定端设设反射反射时时无能量无能量损

14、损失,求失,求(1)反射波的表达反射波的表达式;式;(2)合成的合成的驻驻波的表达式;波的表达式;(3)波腹和波波腹和波节节的位置的位置 解解:(1)反射点是固定端,所以反射有相位突反射点是固定端,所以反射有相位突变变p p,且反射波振,且反射波振幅幅为为A,因此反射波的表达式,因此反射波的表达式为为 (3)波腹位置:波腹位置:波波节节位置:位置:,n=1,2,3,4,在在x=0处发生反射,处发生反射,(2)驻驻波的表达式波的表达式n=1,2,3,4,在均匀不吸收能量的媒质中传播的平在均匀不吸收能量的媒质中传播的平面波在行进方向上振幅不变。面波在行进方向上振幅不变。借助于上式和能量守恒可讨论波

15、传播时振幅的变化:借助于上式和能量守恒可讨论波传播时振幅的变化:讨论讨论:平面波和球面波的振幅平面波和球面波的振幅证明:因为证明:因为在一个周期在一个周期内通过内通过和和面的能量应该相等面的能量应该相等所以所以,平面波振幅相等:平面波振幅相等:由于振动的相位随距离的增加而由于振动的相位随距离的增加而落后的关系,与平面波类似,球落后的关系,与平面波类似,球面简谐波的波函数:面简谐波的波函数:球面波球面波所以振幅与离波源的距离所以振幅与离波源的距离成反比。如果距波源单位成反比。如果距波源单位距离的振幅为距离的振幅为A则距波源则距波源r r处的振幅为处的振幅为例例6 一个点波源位于一个点波源位于O点

16、,以点,以O为圆心作两个同心球面,半径分为圆心作两个同心球面,半径分 别为别为R1、R2。在两个球面上分别取相等的面积在两个球面上分别取相等的面积S 1和和 S 2,则通过它们的平均能流之比则通过它们的平均能流之比P 1/P2为:为:1、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间的单位为秒,则简谐振动的振动方程为:时间的单位为秒,则简谐振动的振动方程为:C 习习习习 题题题题4、一质点同时参与了两个同方向的简谐振动,它们的振动方、一质点同时参与了两个同方向的简谐振动,它们的振动方 程分别为程分别为 其合成运动的运动方程为其合成

17、运动的运动方程为 x=()5、已知三个简谐振动曲线,则振动方程分别为:、已知三个简谐振动曲线,则振动方程分别为:6、两相干波源、两相干波源S 1 和和 S 2 的振动方程是的振动方程是 ,S 1 距距P 点点 6 个波长,个波长,S 2 距距P 点为点为13/4 个波长。两波在个波长。两波在P点的相位差的绝对值为?点的相位差的绝对值为?例例一平面简谐波沿一平面简谐波沿Ox 轴的负向传播,波长为轴的负向传播,波长为,P 处质点的处质点的 振动规律如图。振动规律如图。求:求:1)P 处质点的振动方程。处质点的振动方程。2)该波的波动方程。)该波的波动方程。3)若图中)若图中 ,求坐标原点,求坐标原点O 处质点的振动方程。处质点的振动方程。解:解:1)设)设P点的振动方程为:点的振动方程为:由旋转矢量法知:由旋转矢量法知:2)设)设B点距点距O点为点为x,则波动方程为:则波动方程为:3)法法1 x=5m 处的振动方程为:处的振动方程为:反射波在该点引起的振动方程为:反射波在该点引起的振动方程为:反射波的波函数为:反射波的波函数为:法法2 O点的振动方程为:点的振动方程为:反射波到达反射波到达x 处引起的振动方程处引起的振动方程 即波函数为:即波函数为:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁