2022年数列几种方法整理题附练习题和答案 .pdf

上传人:H****o 文档编号:60568774 上传时间:2022-11-16 格式:PDF 页数:5 大小:125.31KB
返回 下载 相关 举报
2022年数列几种方法整理题附练习题和答案 .pdf_第1页
第1页 / 共5页
2022年数列几种方法整理题附练习题和答案 .pdf_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2022年数列几种方法整理题附练习题和答案 .pdf》由会员分享,可在线阅读,更多相关《2022年数列几种方法整理题附练习题和答案 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、类型一:1()nnaaf n(fn可以求和)解决方法累加法1.已知数列na,1a=2,1na=na+3n+2,求na。2.已知数列an满足3a132aa1nn1n,求数列an的通项公式。答案:1.(31)2nnna2.2.31nnan类型二:1()nnaf na(()f n可以求积)解决方法累乘法1.已知数列na满足321a,nnanna11,求na。2.已知31a,nnanna23131)1(n,求na。答案:1.23nan2.631nan类型三:1(nnaAaB 其中A,B为常数A0,1)解决方法待定系数法1.在数列na中,11a,当2n时,有132nnaa,求数列na的通项公式。答案:设

2、13nnatat,则132nnaat1t,于是1131nnaa1na是以112a为首项,以 3 为公比的等比数列。12 31nna2.在数列 an中,,13,111nnaaa求na.答案:1132nna3.设在数列na中,11a,112122nnaann求数列na的通项公式。答案:设nnbaAnb1112nnaAnBaA nB展开后比较得204261022AAABB这时11462nnnnbbann2 且bnb是以 3 为首项,以12为公比的等比数列1132nnb即113462nnan,113462nnan4.在数列na中,12a,11222nnnaan求数列na的通项公式。答案:11222nn

3、naan1122nnnaa,两边同除以2n得11222nnnnaa2nna是以12a=1 为首项,2 为公差的等差数列。112212nnann即221nnan类型四:()nnSf a解决方法11(1)(2)nnnsnassn1.已知数列na前 n 项和2214nnnaS.1求1na与na的关系;(2)求通项公式na.答案:1文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9

4、J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4

5、N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M

6、5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2

7、Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10

8、K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C

9、3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2

10、Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M511n时,11142asa,得11a;22n时,1123114422nnnnnnnassaa;得11122nnnaa。(2)在上式中两边同乘以12n得11222nnnnaa;2nna数列是以1122a为首项,2 为公差的等差数列;22222nnann;得12nnna。2.已知在正整数数列na中,前n项和nS满足21(2)8nnSa,求数列na的通项公式.答案:42nan3.数列na前 n 项和2214nnnaS.(1)求1na与na的关系;(2)求通项公式na.答案:(1)由2214nnnaS得:111214nnnaS于是)2121

11、()(1211nnnnnnaaSS,所以11121nnnnaaannnaa21211.(2)上式两边同乘以12n得:22211nnnnaa由1214121111aaSa.于是数列nna2是以 2 为首项,2 为公差的等差数列,所以nnann2)1(22212nnna类型五:迭代类型六:裂项相消如)2(1nnan求 Sn。常用的裂项有111)1(1nnnn;)211(21)2(1nnnn;文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F

12、10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U

13、4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8

14、P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B

15、3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V

16、4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:C

17、Z8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD

18、8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5)2)(1(1)1(121)2)(1(1nnnnnnn1.(湖北卷)已知二次函数()yf x的图像经过坐标原点,其导函数为()62fxx,数列na的前 n 项和为nS,点(,)()nn SnN均在函数()yf x的图像上。()、求数列na的通项公式;()、设11nnnba a,nT是数列nb的前 n 项和,求使得20nmT对所有nN都成立的最小正整数m;解:()设这二次函数f(x)ax2+bx(a 0),则 f(x)=2ax+b,由于 f(x)=6x2,得a=3,b=2

19、,所以f(x)3x22x.又因为点(,)()nn SnN均在函数()yf x的图像上,所以nS3n22n.当 n2 时,anSnSn1(3n22n))1(2)132nn(6n5.当 n1 时,a1S13122615,所以,an6n5(nN)()由()得知13nnnaab5)1(6)56(3nn)161561(21nn,故 Tnniib121)161561(.)13171()711(nn21(1161n).因此,要使21(1161n)20m(nN)成立的 m,必须且仅须满足2120m,即 m 10,所以满足要求的最小正整数m 为 10.2.求数列,11,321,211nn的前 n 项和.解:设n

20、nnnan111则11321211nnSn)1()23()12(nn11n文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6

21、HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5

22、ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档

23、编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J

24、6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N

25、5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5

26、文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5类型七:错位相减法(2014?濮阳二模)设an是等差数列,bn是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13()求 an、bn的通项公式;()求数列的前 n

27、项和 Sn解答:解:()设 an的公差为d,bn的公比为q,则依题意有q0 且解得 d=2,q=2所以 an=1+(n 1)d=2n1,bn=qn1=2n1(),得,=文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z

28、2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F1

29、0K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4

30、C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P

31、2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3

32、F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5文档编码:CZ8P2Z2Q9J6 HD8B3F10K4N5 ZD1V4U4C3M5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁