《2022年初中数学七年级下册第九章《一元一次不等式组的解法》 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学七年级下册第九章《一元一次不等式组的解法》 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、新课标人教版初中数学七年级下册第九章9.3 一元一次不等式组的解法精品教案一、素质教育目标(一)知识教学点1掌握一元一次不等式组的解法2准确利用数轴解一元一次不等式组(二)能力训练点1通过学习一元一次不等式组的解法,培养学生的逻辑思维能力2培养学生运用所学知识解决实际问题及处理其他学科相关问题的能力(三)德育渗透点通过总结不等式组解集的规律,训练学生的思维能力、语言表达能力,培养勇敢的探索精神(四)美育渗透点通过用数轴表示不等式组的解集,渗透数形结合的数学美二、学法引导1教学方法:尝试指导法、实习作业法、讲练法2学生学法:一元一次不等式组的解法是分别解不等式组中的每个不等式,然后利用数轴找出它
2、们的公共部分,即得不等式组的解集熟练掌握以后,对于由两个不等式组成的不等式组,也可以直接按“同大取大,同小取小,一大一小中间找”的规律得出解集三、重点难点疑点及解决办法(一)重点掌握一元一次不等式组的解法(二)难点1正确运用不等式基本性质32避免不等式变形中常见的错误3注意“”与“”,“左边部分”与“右边部分”(三)疑点如何正确运用“同大取大,同小取小,一大一小中间找”的规律求不等式组的解集(四)解决办法既要熟练掌握一元一次不等式组的解法,同时又要用数形结合的方法来帮助理解上述的规律性的结论四、课时安排一课时五、教具学具准备直尺、铅笔、投影仪或电脑、自制胶片六、师生互动活动设计1设计一组求一元
3、一次不等式组解集的题目,让学生尽可能地通过观察得出答案,然后让学生互相讨论是否有规律性的结论2教师讲解范例,师生共同完成解题的过程,并尝试类似的练习,巩固所学的知识3通过各种题型反复训练一元一次不等式组的解集的方法,通过变式训练加深对本节课知识的理解与消化七、教学步骤()明确目标本节课的重点是掌握一元一次不等式组的解法并会用数轴表示它的解集(二)整体感知一元一次不等式组及其解法的关键在于能独立准确地求出每个不等式的解集,故在求解的过程中应特别注意不等式基本性质3 的应用以及避免不等式变形中的其他常见的错误,最后应学会应用数轮或规律性的结论来表示一元一次不等式组的解集(三)教学过程1创设情境,复
4、习引入(1)什么是一元一次不等式组的解集?什么是解不等式组?一元一次不等式组的解集与一元一次不等式的解集有什么区别?(区别:一元一次不等式必有解集,而一元一次不等式组可能无解)(2)解不等式组:52xx52xx52xx52xx学生活动:学生独立思考,一个或几个学生说出结果答案:(2)5x无解52x2x不等式组的解集有没有规律呢?怎样用文字来概括呢?学生活动:结组讨论,尝试得到规律:“”“”取“x较大数”;“”“”取“x较小数”;“x较小数”且“x较大数”,则解集为“较小数x较大数”即x夹中间;“x较大数”且“x较小数”则原不等式组无解这与利用数轴找折线的公共部分是一致的(3)思考:已知ba,说
5、出下列不等式组的解集:bxaxbxaxbxaxbxax【教法说明】设置(2)题、(3)题,旨在引导学生揭示规律、应用规律,渗透理论来源于实践、理论指导实践的思想2探索新知,讲授新课例 1 解不等式组)2(148)1(112xxxx学生分析:要求不等式组的解集,需先求出不等式的解集,再找出解集的公共部分师生活动:学生叙述解题过程,教师板书解:解不等式,得2x解不等式,得3x在数轴上表示不等式组的解集:所以这个不等式组的解集为3x【教法说明】通过让学生分析题意,叙述解题过程,训练他们的思维能力和语言表达能力例 2 解不等式组文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K
6、9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6
7、K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K
8、6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5
9、K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY
10、5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 Z
11、Y5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6
12、ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2)2(423)1(532xx学生分析:不等式解集的公共部分,就是不等式组的解集若无公共部分,那么这个不等式组无解解:解不等式,得1x解不等式,得2
13、x在数轮上表示不等式组的解集是:可以看出,这两个不等式的解集没有公共部分这时,我们就说不等式组无解【教法说明】学生在练习本上独立完成,同时指名板演按照集合的观点,不等式组无解就说它的解集为空集,但不必向学生指出,例 3 解不等式组)2(237127)1(1325xxxx学生活动:独立完成,同桌互阅,与课本中解题过程对比解:解不等式得5.2x解不等式得4x在数轴上表示不等式组的解集:所以不等式组的解集是承5.2x教师活动:巡视指导,抽查,纠正,强调有关注意事项【教法说明】通过练习,训练学生的思维能力、语言表达能力、计算能力例 4 解不等式组)3(062)2(045)1(023xxx学生活动:独立
14、完成,前后桌互阅,与投影出示的正确答案对照解:解不等式,得32x解不等式,得54x解不等式,得3x在数轴上表示不等式的解集:文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z
15、3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7
16、Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN
17、7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 H
18、N7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4
19、HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4
20、 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B
21、4 HN7Z3Z1V7T6 ZY5K6K9F10T2所以不等式组的解集为354x【教法说明】通过例 4 说明,不等式组解集的求法与不等式的个数无关,只与“公共部分”有关请同学们根据自己的理解,尝试解答下面习题例 5 解不等式53121x学生活动:前后桌结组讨论,尝试用不同方法解题教师活动:归纳解法,板书过程解法一:这个不等式可改写成不等式组:)2(5312)1(1312xx解不等式,得1x解不等式,得8x在数轴上表示不等式的解集:所以不等式组的解集为:81x解法二:53121x不等式各项都乘以3,得15123x各项都加上1,得11511213x即1622x各项都除以2,得81x【教法说明】通过
22、补充例5,拓宽了学生思路,使他们了解联立不等式有两种解法;教学时,例 1、例 5 可由教师引导分析并板书,其余例题可由学生自己解出,然后与正确答案订正;教师要根据任课班级的实际情况适当选用例题及教学方法3尝试反馈,巩固知识(1)解下列不等式组xxxx41091546521512512xxxx(2)单项选择题:下列不等式组无解的是()文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码
23、:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编
24、码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档
25、编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文
26、档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2
27、文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T
28、2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10
29、T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2A04012xx B07403xx C3272xxx D6305xx不等式组1321423yyyy的解集是()A1y B41y C1y D不存在学生活动:独立完成,指名说出答案:(1)1x327x(2)D C【教法说明】设置上述题组,目的是训练学生的应变能力和思维的灵活性以抢答形式完成则可激发学生的学习热情,强化参与意识5归纳总结(学生
30、小结,师生共同完善)解一元一次不等式组可以分为以下两个步骤:(1)求出这个不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即求出了这个不等式组的解集(如果各个不等式的解集没有公共部分,则这个不等式组无解)八、布置作业(一)必做题:P79 A 组 3(2)(4);P80 B 组 2(二)补充题:1解不等式组12123125332xxxx2一个两位数,其个位数字比十位数字大2,已知这个两位数不小于20,不大于40,求这个两位数参考答案(一)3(2)1x(4)无解 23,4(二)1147x 224 或 35 九、板书设计6.4 一元一次不等式组和它的解法(二)例 1 例 2
31、例 5 小结:解解解法一:解一元一次不等式组的步骤:解法二:求各不等式的解集利用数轴求出解集的公共部分文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5
32、K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY
33、5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 Z
34、Y5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6
35、ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6
36、 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T
37、6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2文档编码:CG9Z10V10M4B4 HN7Z3Z1V7T6 ZY5K6K9F10T2