《2022年必修五模块考试试题 .pdf》由会员分享,可在线阅读,更多相关《2022年必修五模块考试试题 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学期中模拟考试题姓名考号一、选择题(每小题5 分,共 60 分)1以下命题正确的是()A0ba,bdacdc0 Bbaba11Cba,dbcadc D22bcacba2不等式210axbx的解集是12,13,则不等式20 xbxa的解集是().A2,3 B,23,C.1 1,3 2 D.11,323若实数,a b满足2ab,是33ab的最小值是()A18 B 6 C 23D2434在等比数列an中,393aa,则6a等于()A 3 B3 C3D35数列na中,16a,且13nnaa,则这个数列的第30 项为()A81 B1125 C87 D99 6在 ABC中,:1:2:3A B C,则
2、:a b c等于()A1:2:3 B3:2:1 C1:3:2 D 2:3:17已知锐角三角形的边长分别为2,3,x,则x的取值范围是()A15x B513x C 05x D 135x8 已知,x y满足条件.3,0,05xyxyx则24xy的最小值为()A.6 B.12 C.-6 D.-12 9等差数列na中,若1201210864aaaaa,则15S的值为()A180 B240 C 360 D720 10等差数列na中,564aa,则10122log(222)aaa()A10 B20 C40 D22log 511 已知两个等差数列na和nb的前n项和分别为nA和nB,且74 53nnAnBn
3、,则使得nnab为整数的正整数n的个数是().A2 B.3 C5 .D4 12.在ABC中,角A、B、C所对的边分别为,a b c,且BC边上的高为36a,则cbbc的最大值是()A.8 B.6 C.32 D.4 二、填空题(每小题5 分,共 20 分)13不等式2422210axax对xR恒成立,则a的取值范围是 .14数列na的前n项和为nS,121,2,aa*211,nnnaanN则100S=.15设0,0 xy35xy,则131xy的最小值为 .16下表给出一个“三角形数阵”:1814,1838,316,332,已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都
4、相等.记第i行第j列的数为ija,则(1)8 3a_;(2)前 20 行中14这个数共出现了_次文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:C
5、O5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ
6、4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1
7、I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码
8、:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5
9、HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 Z
10、R1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5三、解答题(70 分)17.(10 分)在ABC中,内角,A B C的对边分别为,a b c,满足222ababc(1)求角C的度数;(2)若10ab求ABC周长的最小
11、值18(10 分)已知数列na的前n项和为nS,且12nnSn,又数列nb满足:nnabn.(1)求数列na的通项公式;(2)当为何值时,数列nb是等比数列?此时数列nb的前n项和为nT,若存在mZ,rR,使nmTr成立,求m的最大值和r的范围.19.(12 分)已知函数()f xxaxx22,1,x()当a21时,求函数()f x的最小值;(2)若对任意1,x,()0f x恒成立,试求实数a的取值范围文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X
12、5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7
13、 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5
14、文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G
15、3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7
16、M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6
17、L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I
18、7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L520(12 分)某科研小组研究发现:一棵水果树的产量x(单位:百千克)与肥料费用x(单位:百元)满足如下关系:211 02234251xxxxx.此外,还需要投入其它成本(如施肥的人工费等)2x百元.已知这种水果的市场售价为16 元/千克(即16 百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为L x(单位:百元).(1)求L x的函数关系式;(2)当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?21.(13)在 平 面
19、内,四 边 形ABCD的 内 角B与D互 补,2BC,连 结AC,45BAC,60DAC.(1)求 DC;(2)若ADC的面积为32,求四边形ABCD的周长.22(13 分)在数列na中,11111 12nnnnaaan,.(1)设nnabn,求数列nb的通项公式;(2)求数列na的前n项和nS.文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7
20、 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5
21、文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G
22、3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7
23、M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6
24、L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I
25、7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4
26、P7M7 ZR1I9Y10O6L5高二数学期中模拟考试题参考答案一、选择题1.C 2.A 3.B 4.C 5.A;6.C 7.B 8.C 9.C 10.B 11 C 12.D 二、填空题1322a 142600 1532 1614,4 三、解答题17.解:(1)由条件的222+abcab,所以2221cos222abcabCabab,又C为三角形内角,故0120C.(2)222222=+=()()()752abcababababab,得5 3c所以当5ab时,ABC周长取得最小值105 318解:(1)由12nnSn,当1n时,11aS;当2n时,11112222nnnnnnaSSnnn故数列
27、na的通项公式为1122nnnann .(2)由nnabn,则111122nnnbn,则数列nb为等比数列,则首项为11b满足2n的情况,故1,则121112.2 11212nnnnTbbb文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5
28、文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G
29、3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7
30、M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6
31、L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I
32、7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4
33、P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5因为1102nnnTT,所以12 12n是单调递增的,故1nT且2nT,存
34、在mZ,rR,使nmTr成立,则m的最大值为0,r的范围2,.19解(1)当a21时,221)(xxxf,因为)(xf在区间,1上为增函数,所以)(xf在区间,1的最小值为27)1(f(2)在区间,1上,02)(2xaxxxf恒成立022axx恒成立设,1,22xaxxy,1)1(222axaxxy在,1递增,当1x时,ay3min,于是当且仅当03minay时,函数)(xf恒成立,故有 a 的范围3aa20.解:(1)162L xw xxx281630248643251xxxxxx(2)当02x时max242L xL;当25x时867311L xxx4867231431xx.当且仅当4831
35、1xx时,即3x时等号成立.因为434232LL即答:当投入的肥料费用为300 元时,种植该果树获得的最大利润是4300 元.文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1
36、I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码
37、:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5
38、HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 Z
39、R1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档
40、编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X
41、5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L521.解:(1)在ADC中,由正弦定理sinsinDCACDACD,在ABC中同理可得sinsinBCACBACB,因为B与D互补,所以s
42、insinBD,则sinsinDCBCDACBAC,即2sin60sin45DC,解得3DC.(2)在ADC中,由面积公式13sin22AC ADDAC,得2ACAD,由余弦定理2222cosDCADACAD ACDAC,得225ADAC,解得21ACAD,或12ACAD若1,2ACAD,则30,150DB,与ACBC矛盾,则2,1ACAD,所以90D,那么90B,所以2AB.所以四边形ABCD的周长为132 2文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7
43、I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X
44、4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y1
45、0O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5
46、G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S
47、1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9
48、Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:C
49、O5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L522 解:(1)由已知得111ba,且1112nnnaann.即112nnnbb,从而2112bb,32212bb,11122nnnbbn.于是12111111222222nnnbbn,又11b,故所求的通项公式1122nnb.(2)由(1)知1112222nnnnann,111112222nnnnkkkkkkkSkk.而121nkkn n,又112nkkk是一个典型的错位相减法模型,易得1112422nknkkn,12142nnnSn n.文
50、档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3X5 HZ4S1X4P7M7 ZR1I9Y10O6L5文档编码:CO5G7I7G3