《2022年成都市东湖中学九上数学《二次函数》专题---二次函数与几何综合专练 .pdf》由会员分享,可在线阅读,更多相关《2022年成都市东湖中学九上数学《二次函数》专题---二次函数与几何综合专练 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 成都市东湖中学九上数学二次函数专题二次函数与几何综合专练1.如图,在 ABC 中,A=90,AB=2cm,AC=4cm 动点 P 从点 A 出发,沿AB 方向以 1cm/s 的速度向点 B 运动,动点Q 从点 B 同时出发,沿BA 方向以 1cm/s的速度向点A 运动当点P 到达点 B 时,P,Q 两点同时停止运动,以AP 为一边向上作正方形APDE,过点 Q 作 QF BC,交 AC 于点 F设点 P 的运动时间为ts,正方形和梯形重合部分的面积为Scm2(1)当 t=s时,点 P与点 Q 重合;(2)当 t=s时,点 D 在 QF 上;(3)当点 P 在 Q,B 两点之间(不包括Q,B
2、 两点)时,求S 与 t 之间的函数关系式2.如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;(2)如图,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为2(第每秒 1 个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标3.如图,在ABC中,C45,BC10,高AD 8,矩形EFPQ的一边
3、QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H(1)求证:AHADEFBC;(2)设EFx,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1 个单位的速度沿射线QC匀速运动(当点Q与点C文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:
4、CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 H
5、S3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY
6、2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编
7、码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8
8、 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2
9、ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I23
10、 重合时停止运动),设运动时间为t秒,矩形EFFQ与ABC重叠部分的面积为S,求S与t的函数关系式4.如图,四边形OABC 为直角梯形,A(4,0),B(3,4),C(0,4)。点 M从 O出发以每秒2 个单位长度的速度向A运动;点N从 B同时出发,以每秒1 个单位长度的速度向C运动。其中一个动点到达终点时,另一个动点也随之停止运动。过点N作 NP垂直 x 轴于点 P,连结 AC交 NP于 Q,连结 MQ。求:(1)点(填 M或 N)能到达终点;(2)求 AQM 的面积 S与运动时间t 的函数关系式,并写出自变量t 和取值范围,当t 为何值时,S的值最大;(1)是否存在点M,使得 AQM 为直
11、角三角形?若存在,求出点M的坐标,若不存在,说明理由。yxOQBCANPM文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8
12、HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 Z
13、Y2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档
14、编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C
15、8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2
16、 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2
17、文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I24 5.如图所示,矩形OABC 位于平面直角坐标系中,AB=2,OA=3,点 P是 OA上的任意一点,PB平分 APD,PE平分 OPF,且 PD、PF重合(1)设 OP=x,OE=y,求
18、y 关于 x 的函数解析式,并求x 为何值时,y 的最大值;(2)当 PD OA时,求经过E、P、B三点的抛物线的解析式;(3)请探究:在(2)的条件下,抛物线上是否存在一点M,使得 EPM为直角三角形?若存在,求出M点的坐标;若不存在,请说明理由文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1
19、A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P
20、2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E
21、4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4
22、O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R
23、6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2文档编码:CO7N4O1A1C8 HS3O6R6P2K2 ZY2O10V9E4I2