《2022年工科高数主要知识点回顾 .pdf》由会员分享,可在线阅读,更多相关《2022年工科高数主要知识点回顾 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、工科高数主要知识点回顾第七章空间解析几何与向量代数1.向量运算(数量积,向量积)),(),(222111zyxbzyxa,则cos212121bazzyyxxba222111zyxzyxkjiba2.两个向量垂直、平行的充要条件2121210/zzyyxxbaba00212121zzyyxxbaba例如(2006 填空题 1)3.向量的方向余弦,两向量的夹角余弦公式212121121212112121211cos,cos,coszyxzzyxyzyxx222222212121212121coszyxzyxzzyyxxbaba4.关于直线与直线、直线与平面、平面与平面的问题,总是转化为向量与向量
2、的问题例如(2006 选择题 1)第八章多元函数微分法及其应用1.多元函数的极限(化为一元函数的极限问题)例如(2005 填空题 4)2.偏导数的定义00000000000),(),(lim),(),(lim),(0 xxyxfyxfxyxfyxxfyxfxxxx例如(2005 填空题 1)3.全微分dyyzdxxzdz例如(2005 填空题 5)4.复合函数的偏导数(链式图)),(),(),.(yxvvyxuuvufzyvvfyuufyzxvvfxuufxz,例如(2005 选择题 8)(2006 解答题 1)5.隐函数的求导(两边对x 求偏导)zxFFxz例如(2005 填空题 7)(20
3、06 计算题 2)6.方向导数与梯度梯度),(zyxfffgradf方向导数coscoscoszyxffflf方向导数的存在条件如果函数),(yxf在点P可微分,那么函数在该点沿任一方向的方向导数存在例如(2005 选择题 4)7.空间曲线的切线与法平面,空间曲面的切平面与法线空间曲线)(),(),(tztytx切向量)(),(),(/tttT0)()()(,)()()(00/00/00/0/00/00/0zztyytxxttzztyytxx(其他参数方程形式的情形)空间曲面0),(zyxF法向量),(zyxFFFnzyxzyxFzzFyyFxxzzFyyFxxF000000,0)()()(8
4、.多元函数的极值,条件极值(拉格朗日乘数法)极值点可能存在的地方:驻点,不可导点驻点处是否为极值是何种极值的判定:yyxyxxfCfBfA,(1)02BAC为极值点,0A为极小值点,0A为极大值点;(2)02BAC不是极值点.在约束条件0),(yx下求函数),(yxfz的极值文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS
5、3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 Z
6、S3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1
7、ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1
8、 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V
9、1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9
10、V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B
11、9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3构造拉格朗日函数),(),(),(yxyxfyxL令偏导等于零0),(00yxfLfLyyyxxx求出可能的极值点,再根据实际问题的性质判断是否为极值点.例如(2006 解答题 2)第九章重积分1.二重积分的物理意义所占区域为D 面密度为),(yx的平面薄片的质量DdyxM),(2.二重积分的计算(化为二次积分)(1)直角坐标系下若 D 为 X 型区域,)()(,:21xyxbxaD,则bax
12、xDdyyxfdxdxdyyxf)()(21),(),(若 D 为 Y 型区域,)()(,:21yxydycD,则dcyyDdxyxfdydxdyyxf)()(21),(),(例如(2006 选择题 2)(2006 计算题 4)(2)极坐标系下若)()(,:21baD,则baDdfddyxf)()(21)sin,cos(),(例如(2005 填空题 2)(2005 选择题 3)3.交换积分次序(1)根据二次积分写出积分区域表达式(2)根据积分区域表达式画出积分区域(3)将需要的区域表达式形式写出来(4)写出相应的二次积分例如(2006 填空题 3)(2006 计算题 3)4.三重积分的计算(化
13、为三次积分)(1)直角坐标系下先算一重积分后算二重积分文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9
14、O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N
15、9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3
16、N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T
17、3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10
18、T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F1
19、0T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3若在 xOy 面上
20、的投影为xyD,上下曲面方程分别为),(),(12yxzzyxzz,则xyDyxzyxzdzzyxfdxdydvzyxf),(),(21),(),(先算二重积分后算一重积分若在 z 轴上的投影为21czc,用垂直于z 轴的平面截积分区域得zD,则21),(),(ccDzdxdyzyxfdzdvzyxf例如(2005 三)(2)柱面坐标系下若在 xOy 面上的投影xyD在极坐标系下为)()(,21ba,上下曲面方程分别为),(),(12zzzz,则bazzdzzfdddvzyxf)()(),(),(2121),sin,cos(),((3)在球面坐标系下cos,sinsin,cossinzyrxd
21、drdrrrrfdvzyxfsin)cos,sinsin,cossin(),(25.利用对称性可以简化积分的计算积分区域关于0 x对称,则f是 x 的奇函数时积分为0,偶函数时积分为半边区域上积分的2 倍;积分区域关于0y对称,则f是 y 的奇函数时积分为0,偶函数时积分为半边区域上积分的2 倍;积分区域关于0z对称,则f是 z 的奇函数时积分为0,偶函数时积分为半边区域上积分的2 倍6.重积分的应用(曲面面积)曲面),(yxfz在 xOy 面上的投影为D,则DyxdffA221第十章曲线积分与曲面积分1.曲线积分的计算(化为定积分)文档编码:CP8F10T3N9O10 HF4L3G5B9V1
22、 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V
23、1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9
24、V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B
25、9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5
26、B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G
27、5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3
28、G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3对弧长的曲线积分btatzztyytxx),(),(),(badtzyxtztytxfdszyxf2/2/2/)()()()(),(
29、),(),((参数方程的其他情形)例如(2005 选择题 5)对坐标的曲线积分)(),(tyytxx,t 从a到bbaLdttQytPxdyyxQdxyxP)()(),(),(/(参数方程的其他情形)2.两类曲线积分之间的关系dsRQPRdzQdyPdx)coscoscos(其中cos,cos,cos为曲线切向量的方向余弦3.格林公式,积分与路径无关LDQdyPdxdxdyyPxQ其中 L 为 D 的正向边界(外边界逆时针,内边界顺时针)例如(2005 选择题 6)(2005 四)(2006 选择题 4)(2006 解答题 3)4.曲面积分的计算(化为重积分)对面积的曲面积分),(yxzz,曲
30、面在xOy 面上的投影为xyD,则xyDyxdxdyzzyxzyxfdSzyxf221),(,(),(例如(2005 选择题 7)对坐标的曲面积分xyDdxdyyxzyxRdxdyzyxR),(,(),(,曲面取z 轴正向侧时取正,否则取负yzDdydzzyzyxPdydzzyxP),),(),(,曲面取x 轴正向侧时取正,否则取负zxDdzdxzxzyxQdzdxzyxQ),(,(),(,曲面取y 轴正向侧时取正,否则取负例如(2006 计算题 7)5.两类曲面积分之间的关系dSRQPRdxdyQdzdxPdydz)coscoscos(文档编码:CP8F10T3N9O10 HF4L3G5B9
31、V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B
32、9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5
33、B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G
34、5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3
35、G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L
36、3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4
37、L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3其中cos,cos,cos为曲面法向量的方向余弦应用(1)将对坐标的曲面积分化为对面积的曲面积分再计算;应用(2)将对不同坐标的
38、曲面积分化为对同种坐标的曲面积分dxdyzyxPdSzyxPdydzzyxPcoscos),(cos),(),(dxdyzyxQdSzyxQdzdxzyxQcoscos),(cos),(),(6.高斯公式RdxdyQdzdxPdydzdvzRyQxP其中为的外表面例如(2005 六)第十一章无穷级数1.收敛级数的基本性质收敛收敛收敛;收敛发散发散若0limnnu,则级数发散2.常用的两个级数(1)几何级数0nnq当1q时收敛,1q发散(2)p-级数11npn当1p时收敛,1p时发散例如(2005 填空题 6)3.正项级数的审敛法比较审敛法的极限形式设lvunnnlim,则(1)l0时,nu与n
39、v有相同的敛散性;(2)0l时,nv收敛则nu收敛;(3)l时,nv发散则nu发散;文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3
40、文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D
41、3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8
42、D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y
43、8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3
44、Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A
45、3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10
46、A3Y8D3例如(2006 计算题 1)比值审敛法设luunnn1lim,则当1l时收敛,当1l时发散根值审敛法设lunnnlim,则当1l时收敛,当1l时发散4.交错级数的审敛法(莱布尼兹审敛法)若交错级数的一般项满足:绝对值单调递减趋于0,则交错级数收敛例如(2006 选择题 5)5.任意项级数收敛的判断(绝对收敛,条件收敛)例如(2006 选择题 5)6.幂级数的收敛域设nnnaa1lim,则收敛半径1R不能用该定理求收敛半径时,可以考虑用证明本定理的方法例如(2005 五)(2006 填空题 5)7.幂级数的和函数,函数的幂级数展开(间接法)逐项求导,逐项积分化为已知和函数的幂级数(注
47、意注明收敛域)例如(2005 五)(2006 计算题 6)8.周期为2的函数的傅立叶展开10)sincos(2)(nnnnxbnxaaxf其中,2,1,0,cos)(1nnxdxxfan,2,1,sin)(1nnxdxxfbn9.收敛定理(狄里克雷充分条件)当 x 是)(xf的连续点时,傅立叶级数收敛于)(xf;当 x 时)(xf的间断点时,傅立叶级数收敛于)0()0(21xfxf例如(2005 填空题 3)第十二章微分方程1.可分离变量的微分方程(两边积分)dyygdxxf)()(文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3
48、N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T
49、3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10
50、T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F10T3N9O10 HF4L3G5B9V1 ZS3G10A3Y8D3文档编码:CP8F1