考生首轮数学复习的关键.docx

上传人:飞****2 文档编号:60125181 上传时间:2022-11-13 格式:DOCX 页数:28 大小:1.05MB
返回 下载 相关 举报
考生首轮数学复习的关键.docx_第1页
第1页 / 共28页
考生首轮数学复习的关键.docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《考生首轮数学复习的关键.docx》由会员分享,可在线阅读,更多相关《考生首轮数学复习的关键.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念

2、及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、了解数列极限和函数极限(包括左极限与右极限)的概念6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7、理解无穷小量的概念和基本性质,掌握无穷小量的比

3、较方法了解无穷大量的概念及其与无穷小量的关系8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(LHospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理

4、解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3、了解高阶导数的概念,会求简单函数的高阶导数4、了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6、会用洛必达法则求极限7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函

5、数极值、最大值和最小值的求法及其应用8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线9、会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2、了解定积分的概念和基本性质,了解定

6、积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4、了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1、了解多元函数的概念,了解二元函数的几何意义2、了解二元函数

7、的极限与连续的概念,了解有界闭区域上二元连续函数的性质3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及

8、其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1、了解级数的收敛与发散、收敛级数的和的概念2、了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4、会求幂级数的收敛半径、收敛区间及收敛域5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和

9、逐项积分),会求简单幂级数在其收敛区间内的和函数6、了解,及的麦克劳林(Maclaurin)展开式六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3、会解二阶常系数齐次线性微分方程4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函

10、数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5、了解差分与差分方程及其通解与特解等概念6、了解一阶常系数线性差分方程的求解方法7、会用微分方程求解简单的经济应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1、了解行列式的概念,掌握行列式的性质2、会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三

11、角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5、了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范

12、化方法考试要求1、了解向量的概念,掌握向量的加法和数乘运算法则2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3、理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5、了解内积的概念掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求

13、1、会用克拉默法则解线性方程组2、掌握非齐次线性方程组有解和无解的判定方法3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4、理解非齐次线性方程组解的结构及通解的概念5、掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩

14、阵化为相似对角矩阵的方法六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3、理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求

15、1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2、理解离散型随机变量及其概率

16、分布的概念,掌握01分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5、会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布。考试要求1、理解多维随机变量的分布函数的概念和基本性质2、理解二维离散型随机变量的概率分布和二维连

17、续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性

18、质,并掌握常用分布的数字特征2、会求随机变量函数的数学期望3、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivreLaplace)定理列维-林德伯格(LevyLindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率六、数理统计的基本概念考

19、试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布4、了解经验分布函数的概念和性质七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1、了解参数的点估计、估计量与估计值的概念2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法高数前两章易错点:考研数学复习中,能够把握好一些高频易错知

20、识点的话,可以帮助我们更进一步深刻理解知识点,并且提高做题的效率和准确度。老师大致总结了一些高等数学前两章内容当中容易出现的错误点,希望考研的同学复习数学有所帮助。1.函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。2,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。4.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。5.设函数y=f(x)在x=a处可导,则函数

21、y=f(x)的绝对值在x=a处不可导的充分条件是:f(a)=0,f(a)06.无穷小量与有界变量之积仍是无穷小量。7.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。8.在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。9.在运用两个重要极限求函数极限的时候,一定要首先把所求的式子变换成类似于两个重要极限的形式,其次还需要看自

22、变量的取极限的范围是否和两个重要极限一样。10.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。高等数学函数求极限、函数连续性等内容,是高等数学的基础,在考试当中,常考的类型题目可以分为几大类。其中,求函数极限是高数最基本的题目类型,还有函数的导数、微分等知识点。我们在复习做题的时候,方法往往是灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。题型一、若干项之和或之积的极限问题。求若干项之和或之积的极限常用的方法有:(1)先求和或积,再求极限。(2)迫敛定理。(3)定积分的定义。注意,在使用定积分的定义求极限的时

23、候,必须满足两个特征,一是分子和分母的各项次数分别相等,二是分母的次数要高于分子的一次。变限积分求极限问题、极限存在性问题以及间断点的判别分类这三类问题在考研数学当中也是常考题型,考试难度不大,老师为大家整理变限积分求极限问题的易考知识点,希望2017考研复习备考的同学能够掌握,不在这类题目当中失分。题型四、极限存在问题极限存在问题一般是用两个方法,即迫敛定理(也叫夹逼准则)和单调有界定理,单调有界定理一般用在已知数列的前一项和后一项关系式时候,如果不知道关系式,一般极限不容易求得。迫敛性定理一般是用来求函数极限的具体的值的。题型五、间断点的判别及分类问题第二章常考知识点,大多是记忆性的法则、

24、公式等,比较容易理解,最容易得分。常考的题型有:题型六、导数微分的定义及函数可导性判断。可导必连续,连续不一定可导.分段函数分界点处的导数一定要用导数的定义求.题型七、显函数、隐函数、由参数方程确定的函数的求导问题。常用的求函数导数的方法有取对数法。题型八、分段函数的可导性判断。这种题型一般情况下,题目中会有未知的参数,通过对于分段函数的在间断点的可导性判断,从而确定题目中未知参数的值。我们判断分段函数间断点的可导性时候,一般用定义来证明。题型九、导数的几何运用。一般是让求曲线在某一点处的切线方程。判断函数的单调性、凹凸性、拐点等。注意:首先看定义域然后判断函数的单调区间求极值和最值,利用公式

25、判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号)2017考研数学复习:反常积分考研数学大纲从2009年开始,在近几年没有任何变动,对于数一而言,大纲仅仅要求“了解反常积分的概念,会计算反常积分”。但是我们发现在历年真题中对于反常积分的考查是每年必考的,有些比较简单题目直接根据反常积分的概念进行计算和判断其敛散性即可,但是对于有些较为复杂的题目,则需要利用反常积分的判别方法进行判别才可求解。考试大纲对于反常积分的判别方法虽然没有具体的要求,但是我们发现在真题中对于判别方法考到多次,所以老师希望后面2017考研的同学在备考过程中,还是要把判别方法对应认真学习一下,做到可以灵活

26、应用。下面老师对反常积分的知识进行总结一下,希望对大家后面的复习有所帮助和指导。1.无穷区间上的反常积分2017考研高数:求极限的方法总结考研高数求极限是考研数学的重要考点,下面将各种求极限的方法总结如下,希望能帮到你们。1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然

27、n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式

28、的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,

29、放缩和扩大。7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)11、还有个方法,非常方便的方法

30、,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。15、单调有界的性质,对付递推数列时候使用证明单调性!16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加

31、减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;3、复合函数之间是自变量与应变量互换的关系;4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断

32、点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。考研高数求极限是考研数学的重要考点,下面将各种求极限的一般题型总结如下1、求分段函数的极限,当函数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数正负无穷的结果是不一样的!2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太

33、麻烦了你要想办法把它搞掉!解决办法:1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!问题2:被积分函数中既含有t又含有x的情况下如何解决?解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!)3、求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值

34、,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了!4、涉及到极限已经出来了让你求未知数和位置函数的问题。解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如:当x趋近0时候f(x)比x=3的函数,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用,主要是因为当未知数有几个时候,使用洛必达法则,可以消掉某些未知数,求其他的未知数。5、极限数列涉及到的证明题,只知道是要

35、构造新的函数,但是不太会!最后总结一下间断点的题型:首先,遇见间断点的问题、连续性的问题、复合函数的问题,在某个点是否可导的问题。主要解决办法一个是画图,你能画出反例来当然不可以了,你实在画不出反例,就有可能是对的,尤其是那些考概念的题目,难度不小,对我而言证明很难的!我就画图!我要能画出来当然是对的,在这里就要很好的理解一阶导的性质2阶导的性质,函数图形的凹凸性,函数单调性函数的奇偶性在图形中的反应!(在这里尤其要注意分段函数!(例如分段函数导数存在还相等但是却不连续这个性质就比较特殊!应为一般的函数都是连续的);方法2就是举出反例!(在这里也是尤其要注意分段函数!)例如一个函数是个离散函数

36、,还有个也是离散函数他们的复合函数是否一定是离散的嘞?答案是NO,举个反例就可以了;方法3上面的都不行那就只好用定义了,主要是写出公式,连续性的公式,求在某一点的导数的公式最后了,总结一下函数在某一点是否可导的问题:1、首先函数连续不一定可导,分段函数x绝对值函数在(0,0)不可导,我的理解就是:不可导=在这点上图形不光滑。可导一定连续,因为他有个前提,在点的邻域内有定义,假如没有这个前提,分段函数左右的导数也能相等;主要考点1:函数在某一点可导,他的绝对值函数在这点是否可导?解决办法:记住函数绝对值的导数等于f(x)除以(绝对值(f(x)再乘以F(x)的导数。所以判断绝对值函数不可导点,首先

37、判断函数等于0的点,找出这些点之后,这个导数并不是百分百不存在,原因很简单分母是无穷小,假如分子式无穷小的话,绝对值函数的导数依然存在啊,所以还要找出f(a)导数的值,不为0的时候,绝对值函数在这点的导数是无穷,所以绝对值函数在这些点上是不可导的啊。考点2:处处可导的函数与在,某一些点不可导但是连续的函数相互乘的函数,这个函数的不可导点的判断,直接使用导数的定义就能证明,我的理解是f(x)连续的话但是不可导,左右导数存在但是不等,左右导数实际上就是X趋近a的2个极限,f(x)乘以G(x)的函数在x趋近a的时候,f(x)在这点上的这2个极限乘以g(a),当g(a)等于0的时候,左右极限乘以0当然相等了,乘积的导数=f(a)导数乘以G(a)+G(a)导数乘以F(a),应为f(a)导数乘以G(a)=0,前面推出来了,所以乘积函数在这点上就可导了。导数为G(a)导数乘以F(a)。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁