《工程电磁场静电场第2讲复习进程.ppt》由会员分享,可在线阅读,更多相关《工程电磁场静电场第2讲复习进程.ppt(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第 一一 章章静静 电电 场场工程电磁场静电场第2讲第第 一一 章章静静 电电 场场 图 同轴电缆 同轴电缆的电场应该是什么样?第第 一一 章章静静 电电 场场 图 同轴电缆的电场分布 第第 一一 章章静静 电电 场场1.2.2 静电场中的电介质l 电介质中的电荷不能自由运动,仅能在分子范围内,因此称为束缚电荷;l 电介质的分子可分为两类:一类是非极性分子,正负束缚电荷重心重合;另一类是极性分子,正负束缚电荷重心偏移;第第 一一 章章静静 电电 场场发生两种极化:位移极化和旋转极化;1.2.2 静电场中的电介质在外电场作用下(静电平衡后):电介质在外电场作用下发生极化,形成有向排列;无极性分
2、子有极性分子 图 电介质的极化 E E第第 一一 章章静静 电电 场场1.2.2 静电场中的电介质在外电场作用下(静电平衡后):重心偏离、有向排列后形成电偶极子;电偶极子:两个距离很近的等量异号电荷组成的整体;电介质内部和表面产生极化电荷;极化电荷与自由电荷都是产生电场的源。第第 一一 章章静静 电电 场场1.2.2 静电场中的电介质电偶极子的电位计算:l 设两电荷的电量分别为+q和-q,l 从负电荷到正电荷 的距离矢量为d;l 定义“电偶极距”用p表示,且电偶极距p=qd极化的电介质可视为体分布的电偶极子,因此引起的附加电场可视为电偶极子引起的电场的叠加。第第 一一 章章静静 电电 场场第第
3、 一一 章章静静 电电 场场第第 一一 章章静静 电电 场场如何表示电介质被极化的强弱?极化强度P第第 一一 章章静静 电电 场场极化强度P表示电介质的极化程度,即C/m2电偶极矩体密度电偶极矩体密度 实验结果表明,在各向同性、线性、均匀介质各向同性、线性、均匀介质中电介质的极化率(1 1)各向同性各向同性媒质媒质 媒质特性不随电场的方向改变;反之,称为各向异性媒质;(2)线性媒质 媒质参数与电场强度成正比关系;反之,称为非线性媒质;(3)均匀媒质 媒质参数不随空间坐标而变化;反之,称为非均匀媒质。第第 一一 章章静静 电电 场场 极化强度 P 是电偶极矩体密度,单个电偶极子产生的电位体积 V
4、 内电偶极子产生的电位极化强度与极化电荷的关系第第 一一 章章静静 电电 场场矢量恒等式:下 页上 页返 回图 电偶极矩产生的电位即:第第 一一 章章静静 电电 场场令极化电荷体密度极化电荷面密度下 页上 页返 回第第 一一 章章静静 电电 场场1.2.3 高斯定律 简单情况:真空中的高斯定律第第 一一 章章静静 电电 场场1.2.3 高斯定律 说明 静电场是有源(散)场,电荷是电场的通量源。E的散度第第 一一 章章静静 电电 场场较复杂情况:电介质中的高斯定律定义 电位移矢量(电通量密度)所以高斯定律的微分形式取体积分有高斯定律的积分形式(一般形式)第第 一一 章章静静 电电 场场在各向同性
5、介质中介电常数 F/m其中 相对介电常数,无量纲量。构成方程第第 一一 章章静静 电电 场场高斯定律的一般形式高斯定律的在真空中的情况第第 一一 章章静静 电电 场场例1.2.1 平板电容器中有一块介质,画出D、E 和 P 线分布。图 D、E 与 P 三者之间的关系D线E线P线思考D 线由正的自由电荷出发,终止于负的自由电荷;E 线由正电荷出发,终止于负电荷;P 线由负的极化电荷出发,终止于正的极化电荷。第第 一一 章章静静 电电 场场计算技巧:a)分析场分布的对称性,判断能否用高斯定律 求解。b)选择适当的闭合面作为高斯面,场点在高斯面上。高斯定律适用于任何情况,但仅具有一定对称性的场才有解
6、析解。1.2.4 用高斯定律计算静电场d)使 中的 D 可作为常数提出积分号外。c)在整个或分段高斯面上,E E或D D为恒值。第第 一一 章章静静 电电 场场 例1.2.3 试求电荷线密度为 的无限长均匀带电体的电场。解:分析场分布,取圆柱坐标系由得图 无限长均匀带电体第第 一一 章章静静 电电 场场本 节 结 束作业:P19:1-2-2 1-2-3P67:1-4 1-5第第 一一 章章静静 电电 场场1.3 静电场基本方程、分界面上的衔接条件1.3.1 静电场基本方程静电场是有源(散)无旋场,静止电荷是静电场的源。微分形式积分形式构成方程第第 一一 章章静静 电电 场场矢量 A 可以表示一
7、个静电场。能否根据矢量场的散度判断该场是否静电场?例1.3.1 已知 试判断它能否表示静电场?解:根据静电场的旋度恒等于零的性质,思考第第 一一 章章静静 电电 场场1.3.2 分界面上的衔接条件(物质突变,微分形式方程不适用物质突变,微分形式方程不适用)第第 一一 章章静静 电电 场场1.E 的衔接条件的衔接条件围绕点 P 作一矩形回路()。E 的切向分量连续。根据则有图 介质分界面第第 一一 章章静静 电电 场场包围点 P 作高斯面()。2.D 的衔接条件则有根据图 介质分界面D 的法向分量不连续当 时,D 的法向分量连续。第第 一一 章章静静 电电 场场3.折射定理折射定理当交界面上 时
8、,折射定律第第 一一 章章静静 电电 场场设 P1 与 P2 位于分界面两侧,因此电位连续得电位的法向导数不连续由 ,其中图 电位的衔接条件4、的衔接条件(用电位表示的衔接条件)第第 一一 章章静静 电电 场场图1.3.4 导体与电介质分界面例1.3.2 试写出导体与电介质分界面上的衔接条件。解:分界面衔接条件导体中 E0,D0,各分量等于0,分界面介质侧 E2t0,那么 E=0?第第 一一 章章静静 电电 场场说明(1)导体表面是等位面,E 线与导体表面垂直;图1.3.4 导体与电介质分界面例1.3.2 试写出导体与电介质分界面上的衔接条件。(2)导体表面上任一点的 D 等于该点的 。分界面
9、介质侧第第 一一 章章静静 电电 场场 例1.3.3 试求两个平行板电容器的电场强度。图 平行板电容器第第 一一 章章静静 电电 场场 平板电容器中有一块介质,画出D、E 和 P 线分布。图 D、E 与 P 三者之间的关系D线E线P线思考D 线由正的自由电荷出发,终止于负的自由电荷;E 线由正电荷出发,终止于负电荷;P 线由负的极化电荷出发,终止于正的极化电荷。第第 一一 章章静静 电电 场场解:忽略边缘效应图(a)D相等(面电荷均匀)?图(b)E相等(电压相等)?例1.3.3 试求两个平行板电容器的电场强度。图 平行板电容器第第 一一 章章静静 电电 场场1.4 静电场边值问题、惟一性定理(
10、适用更复杂的情况)1.4.1 泊松方程与拉普拉斯方程泊松方程泊松方程拉普拉斯算子拉普拉斯算子拉普拉斯方程拉普拉斯方程当r=0时第第 一一 章章静静 电电 场场答案:(C)例1.4.1 图示平板电容器的电位,哪一个解答正确?图 平板电容器外加电源U01.4.2 静电场边值问题(积分问题,必然产生待定常数积分问题,必然产生待定常数)第第 一一 章章静静 电电 场场1.4.2 静电场边值问题(积分问题,必然产生待定常数积分问题,必然产生待定常数)边值问题微分方程边界条件场域边界条件分界面衔 接条件 自然边界条件 有限值泊松方程拉普拉斯方程第第 一一 章章静静 电电 场场场域边界条件1)第一类边界条件
11、(狄里赫利条件,Dirichlet)2)第二类边界条件(诺依曼条件 Neumann)3)第三类边界条件已知边界上电位及电位法向导数的线性组合已知边界上导体的电位已知边界上电位的法向导数第第 一一 章章静静 电电 场场有限差分法有限元法!边界元法矩量法积分方程法积分法分离变量法镜像法、电轴法微分方程法保角变换法计算法实验法解析法数值法实测法模拟法边值问题第第 一一 章章静静 电电 场场例1.4.2 试写出长直同轴电缆中静电场的边值问题。解:根据场分布的对称性确定计算场域,边值问题(阴影区域)图 缆心为正方形的同轴电缆第第 一一 章章静静 电电 场场1.4.3 惟一性定理惟一性定理:在静电场中,满足给定边界条件的电位微分方程的解是惟一的。这样就可以寻求间接求解电场的方法。条件?(1)满足泊松或拉普拉斯方程。对象?(2)满足介质分界面衔接条件。对象?(3)满足边界条件。对象?解微分方程的方法?为新方法的解题结果正确性 提供理论依据第第 一一 章章静静 电电 场场 本 节 结 束第第 一一 章章静静 电电 场场此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢