《建筑制图与阴影透视大专课件培训讲学.ppt》由会员分享,可在线阅读,更多相关《建筑制图与阴影透视大专课件培训讲学.ppt(107页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、n建筑制图与阴影透视大专课件第二节第二节 制图用品制图用品n一、图纸一、图纸 有绘图纸和描图纸两种n二、绘图铅笔二、绘图铅笔 铅笔的型号以铅芯的软硬程度来分,分别用H和B表示,H前的数字越大,表示铅芯越硬;B前面的数字越大,表示铅芯越软n三、其他用品三、其他用品 绘图墨水 制图模板 排笔 擦图片 第二章第二章 制图基本知识制图基本知识 房屋建筑制图统一标准房屋建筑制图统一标准(GB/T50001-2001)第一节第一节 图纸幅面规格图纸幅面规格 n一、图纸幅面一、图纸幅面 图纸幅面是指图纸的大小n二、标题栏与会签栏二、标题栏与会签栏 每张图纸都应在右下角设置标题栏。用于填写设计单位名称,工程名
2、称、图名、图号、设计编号,以及设计人、制图人、校对人、审核人的签名和日期。bl会签栏会签栏标题栏标题栏第二节第二节 图线图线n一、图线的种类及用途一、图线的种类及用途n建筑工程图常用的图线有n实线、n虚线、n点画线、n折断线、n和波浪线等,n其中这些图线还有粗、中、细之分n联系实例联系实例单点长画线实线实线单点长画线单点长画线折断线折断线实线实线虚线虚线双点长画线双点长画线二、图线的画法要求二、图线的画法要求n(1)图线的宽从下列线宽系列中选取n(2)同一张图纸内相同比例的各图样应选用相同的线宽组n(3)图纸的图框和标题栏线,应从下表选用n(4)相互平行的图线,其间隙不宜小于其中的粗线宽度,且
3、不宜小于0.7mmn(5)虚线,点画线的弦断长度和间隙,宜各自相等。n(6)点画线当在较小的图中绘制有困难时,可用实线代替。n(7)点画线的两端,不应是点。点画线与点画线交接或点画线与其他图线交接时,应是线段相交。n(8)虚线与虚线相交或虚线与其他图线相交时应是线段相交。虚线为实线的延长线时,不得与实线相交。第三节第三节 字体字体n一、汉字一、汉字n汉字图样及说明中的汉字,宜采用长仿宋 体,长仿宋体字的书写要领是横平竖直、起落分明、粗细一致、结构匀称、充满方格 其高度和与宽度关系应符合课本中表2-5的要求。n二、数字和字母二、数字和字母n数字和字母在图样上的书写分直体和斜体两种,但同一张图纸上
4、必须统一。如需写成斜体字,其斜度应从字的底线逆时针向上倾斜75。数字及字母写法数字及字母写法文字写法文字写法图名及比例的注写图名及比例的注写第四节第四节 比例比例常用比例常用比例11、12、15、110、120、150、1100、1150、1200、1500、11000、12000、15000、110000、120000、150000、1100000、1200000可用比例可用比例13、14、16、115、125、130、140、160、180、1250、1300、1400、1600n 图样的比例,为图形与实物相对应的线性尺寸之比。比例的大小是指其比值的大小,如150大于1100;n 如果图样
5、上某线段长为10mm,而实际物体相应部位的长为1000mm时,则比例等于1比100,写成1100。比例宜注写在图名的右侧,字的基准线应取平;比例的字高宜比图名的字高小一号或二号。n 第五节第五节 尺寸标注尺寸标注n一、尺寸的组成一、尺寸的组成n图样上的尺寸由尺寸界线、尺寸线、尺寸起止符号和尺寸数字组成 1:尺寸界限尺寸界限n尺寸界线用来限定所注尺寸的范围,用细实线绘制,一般应与被注长度垂直,其一端离开图样轮廓线不小于2mm,另一端宜超出尺寸线23mm 2:尺寸线:尺寸线 尺寸线用来表示尺寸的方向,用细实线绘制,并与被注长度平行n3:尺寸起止符:尺寸起止符n尺寸起止符号用来表示尺寸的起止位置,一
6、般用中粗斜短线绘制,其倾斜方向与尺寸界线成顺时针45角,长度宜为23mm。n半径、直径、角度及弧长的尺寸起止符号,宜用箭头表示n4:尺寸数字:尺寸数字n尺寸数字图样上的尺寸数字为物体的实际大小,与采用的比例无关。图样上的尺寸单位,除标高及总平面图以米为单位外,其他必须以毫米为单位n水平方向的数字,注写在尺寸线的上方中部,字的头部朝正上方;竖直方向的数字,注写在竖直尺寸线的左方中部,字的头部朝左n二、尺寸标注二、尺寸标注n1尺寸的排列与布置尺寸的排列与布置n(1)尺寸宜标注在图样轮廓以外,不宜与图线、文字及符号等相交n(2)互相平行的尺寸线,应从被注写的图样轮廓线由近向远整齐排列,较小尺寸应离轮
7、廓线较近,较大尺寸应离轮廓线较远。n(3)图样轮廓线以外的尺寸线,距图样最外轮廓之间的距离,不宜小于10mm。平行排列的尺寸线的间距,宜为710mm,并应保持一致。n(4)总尺寸的尺寸界线应靠近所指部位,中间分尺寸的尺寸界线可稍短,但其长度应相等。n2半径、直径及角度的标注半径、直径及角度的标注n(1)半径的尺寸线应一端从圆心开始,另一端画箭头指向圆弧。半径数字前应加注半径符号“R”n(2)标注圆的直径尺寸时,直径数字前应加直径符号“”。在圆内标注的尺寸线应通过圆心,两端画箭头指至圆弧,较小较小的圆的直径尺寸,可标注在圆外n(3)角度的尺寸线以圆弧表示。该圆弧的圆心是该角的顶点,角的两条边为尺
8、寸界线。起止符号箭头表示,如没有足够位置画箭头,可用圆点代替,角度数字按水平方向注写n3尺寸的简化标注尺寸的简化标注n(1)对于杆件或管线的长度,在单线图(桁架简图、钢筋简图、管线简图)上,可直接将尺寸数字沿杆件或管线的一侧注写n(2)连续排列的等长尺寸,可用“个数等长尺寸=总长”的形式标注n(3)对于形体上有相同要素的尺寸标注,可仅标注其中一个要素的尺寸,并在其前加注个数n(4)对称构配件采用对称省略画法时,该对称构配件的尺寸线应略超过对称符号,仅在尺寸线的一端画尺寸起止符号,尺寸数字按整体全尺寸注写,其注写位置宜与对称符号对齐第三章第三章 绘图的一般步骤和方法绘图的一般步骤和方法n一、用绘
9、图工具、仪器绘制一、用绘图工具、仪器绘制图样图样n(一一)准备工作准备工作n(1)对所绘图样进行识读了解,在绘图之前尽量做到心中有数。n(2)准备好必需的绘图工具、仪器、用品,并把图板、丁字尺、三角板等擦拭干净;将各种绘图用具放在桌子的右边,但不能影响丁字尺的上下移动;洗净双手。n(3)选好图纸,鉴别图纸的正反面,可用橡皮在纸边试擦,不易起毛的面为正面。n(4)将图纸用胶带纸固定在图板的适当位置。固定时,应使图纸的上边对准丁字尺的上边缘,然后下移使丁字尺的上边缘对准图纸的下边。最好使图纸的下边与图板下边保持大于一个丁字尺宽度的距离n(二二)画底稿画底稿n(1)根据制图标准的要求,首先把图框线和
10、标题栏的位置画好。n(2)依据所画图形的大小、多少及复杂程度选择好比例,然后安排好各图形的位置,定好图形的中心线或基线。图面布置要适中、匀称。n(3)首先画图形的主要轮廓线,然后由大到小,由外到里,由整体到细部,完成图形所有轮廓线。n(4)画出尺寸线和尺寸界线等。n(5)检查修正底稿,擦去多余线条n(三三)铅笔加深铅笔加深n(1)加深图线时,必须是先曲线,再直线,后斜线;各类图线的加深顺序为细点画线、细实线、粗实线、粗虚线。n(2)同类图线其粗细、深浅要保持一致,按照水平线从上到下,垂直线从左到右的顺序依次完成。n(3)最后画出起止符号,注写尺寸数字、说明,填写标题栏,加深图框线。n(四四)描
11、图描图n描图就是用墨线把图样描绘在描图纸(也称硫酸纸)上,它是用来复制直接指导生产的施工图的底图。n描图的步骤与铅笔加深的顺序相同,同一粗细的线要尽量一次画出,以便提高绘图的效率n(五五)检查校核图样检查校核图样n二、徒手作图二、徒手作图n(一一)直线的画法直线的画法n画直线时,要注意执笔方法。画短线时,用手腕运笔;画长线时,用整个手臂动作。画水平线时,铅笔要放平些。画长水平线可先标出直线两端点,掌握好运笔方向,眼睛此时不要看笔尖,要盯住终点,用较快的速度轻轻画出底线。加深底线时,眼睛要盯住笔尖,沿底线画出直线并改正底线不平滑之处,n画竖直线和斜线时,铅笔要竖高些,画法与画水平线的方法相同n(
12、二二)角度的画法角度的画法n画角度时,先画出互相垂直的两相交直线,交点为On在两相交线上适当截取相同的尺寸,并各标出一点,徒手作出圆弧n若需画出45角,则取圆弧的中点与两直线交点O的连线,即得连线与水平线间的夹角为45角n若画30角与60角时,则把圆弧作三等分。自第一等分点起与交点O连线,即得连续与水平线间的夹角为30角;第二等分点与交点O连线,即得连线与水平线间的夹角为60角O45n(三三)圆的画法圆的画法n画圆时,先画出互相垂直的两直线,交点O为圆心n估计或目测徒手作图的直径,在两直线上取半径OA=OB=OC=OD,得点A、B、C、D,过点作相应直线的平行线,可得到正方形线框,、CD为直径
13、。n再作出正方形的对角线,分别在对角线上截取OE=OF=OG=OH=OA(半径),于是在正方形上得到八个对称点。n徒手将点用圆弧连接起来,即得徒手画的圆n(四四)椭圆的画法椭圆的画法n画椭圆时,先画出椭圆的长、短轴,具体画图步骤与徒手画圆的方法相同OABCD第二篇第二篇 投影作图投影作图第五章第五章 投影的基本知识投影的基本知识第一节第一节 投影的概念和分类投影的概念和分类n一、投影的概念一、投影的概念n如果假设光线能够透过物体,使组成物体的各棱线都能在投影面上投落下它们的影子,这样的影子,不但能反映物体的外形,也能反映物体上部和内部的情况。n我们把这时所产生的影子称为投影,通常也称投影图投影
14、图;n能够产生光线的光源称为投影中心投影中心;n而光线称为投影线投影线;n承接影子的平面称为投影面投影面n二、投影的分类二、投影的分类n(一)中心投影(一)中心投影n投影中心S在有限的距离内发出放射状的投影线,用这些投影线作出的投影,称为中心投影中心投影。n用中心投影法绘制的物体投影图称为透视图透视图中心投影中心投影透视图透视图n(二)平行投影(二)平行投影n1斜投影斜投影n投影方向倾斜于投影面时所作出的平行投影,称为斜投影斜投影n斜投影法可绘制斜轴测投影图轴测投影图斜投影斜投影轴测投影图轴测投影图n2正投影正投影n投影方向垂直于投影面时所作出的平行投影,称为正投影正投影n用正投影法在两个或两
15、个以上相互垂直的,并平行于物体主要侧面的投影面上分别获得同一物体的正投影,然后按规则展开在一个平面上,便得到物体的多面正投影图多面正投影图正投影正投影三面正投影图三面正投影图第二节第二节 正投影的基本特性正投影的基本特性n一、全等性一、全等性n当直线段平行于投影面时,其投影与直线段等长,这种特性称为全等性n这种投影称为实形投影n二、积聚性二、积聚性n当直线段垂直于投影面时,其投影积聚成一点,当平面图形垂直于投影面时,其投影积聚成一直线段,这种特性称为积聚性n这种投影称为积聚投影n三、类似性三、类似性n当直线段倾斜于投影面时,其投影仍是直线段,但比实长短当平面图形倾斜于投影面时,其投影与平面形类
16、似,但比实形小,这种特性称为类似性。第三节第三节 三面正投影图三面正投影图n三面正投影图当投影方向、投影面确定后,物体在一个投影面上的投影图是唯一的,但一个投影图只能反映物体一个面的形状和尺寸,并不能完整地反映它的全部面貌n一、三面投影体系的建立一、三面投影体系的建立n三个相互垂直的投影面构成三投影面体系n呈水平位置的投影面称为水平投影面水平投影面(简称水平面),用H表示,水平面也可称为H面;n与水平投影面垂直相交呈正立位置的投影面称为正立投影面正立投影面(简称正面),用V表示,正面也可称为V面;n位于右侧与H、V同时垂直相交的投影面称为侧立投影面侧立投影面(简称侧面),用W表示,侧面也可称为
17、W面n二、三面投影图的形成二、三面投影图的形成n将物体置于H面之上,V面之前,W面之左的空间。用分别垂直于三个投影面的平行投影线投影,可得到物体在三个投影面上的正投影图。n投影线由上向下垂直H面,在H面上产生的投影称为水平投影图水平投影图(简称平面图);n投影线由前向后垂直V面,在V面上产生的投影称为正立投影图正立投影图(简称正面图);n投影线由左向右垂直W面,在W面上产生的投影称为侧立投影图侧立投影图(简称侧面图)n三、三面投影的展开三、三面投影的展开n展开规则是,V面保持不动,H面绕OX轴向下翻转90,W面绕OZ轴向右翻转90,则它们就和V面处在同一平面上n正投影图三个投影面展开后,三条投
18、影轴成为两条垂直相交的直线。原OX、OZ轴的位置不变,OY轴则分为两条,在H面上的用OYH表示,它与OZ轴成一直线;在W面上的用OYW表示,它与OX轴成一直线n四、三面正投影图的投影规律四、三面正投影图的投影规律n投影对应规律是指各投影图之间在量度方向上的相互对应nH投影和V投影在X轴方向都反映物体的长度,它们的位置左右应对正,这种关系称为“长对正长对正”;nV投影和W投影在Z轴方向都反映物体的高度,它们的位置上下应对齐,这种关系称为“高平齐高平齐”;nH投影和W投影在Y轴方向都反映了物体的宽度,这种关系称为“宽相等宽相等”。n五、三面正投影的画法五、三面正投影的画法n(1)先画出水平和垂直十
19、字相交线,以作为正投影图中的投影轴n(2)根据物体在三投影面体系中的放置位置,先画出能够反映物体特征的正面投影图或水平投影图 n(3)根据“三等”关系,由“长对正”的投影规律,画出水平投影图或正面投影图;由“高平齐”的投影规律,把正面投影图中涉及到高度的各相应部分用水平线拉向侧立投影面;由“宽相等”的投影规律,用过原点O作一条向右下斜的45线,然后在水平投影图上向右引水平线,与45线相交后再向上引铅垂线,得到在侧立面上与“等高”水平线的交点,连接关联点而得到侧面投影图n(4)擦去作图线,整理、描深45第六章第六章 点、直线、平面的投影点、直线、平面的投影第一节第一节 点的投影点的投影n一、点的
20、三面投影一、点的三面投影n将空间点A置于三投影面体系中,由A点分别向三个投影面作垂线(即投影线),三个垂足就是点A在三个投影面上的投影。用相应的小写字母a、a、an二、点投影的规律二、点投影的规律n(1)点的水平投影和正面投影的连线垂直垂直于OX轴,即aa OX。n(2)点的正面投影和侧面投影的连线垂直垂直与OZ轴,即aa OZ。n(3)点的水平投影到OX轴的距离等于点的侧面投影到OZ轴的距离,即aax=aaz。n(4)点到某一投影面的距离,等于该点在另两个投影面上的投影到其相应投影轴的距离OXYHYWZaaaazaywayhaxn【例例6-1】已知点已知点B的两面投影的两面投影b、b,求作其
21、水平投影,求作其水平投影bn解:解:n(a)已知点B的两投影b、b;n(b)过b作OX轴的垂直线bbx;n(c)在bbx的延长线上截取bbx=bbz,b即为所求XYHYWZbbbn三、点的坐标三、点的坐标n(一)点的坐标(一)点的坐标n点A到W面的距离为x坐标坐标n点A到V面距离为y坐标坐标n点A到H面的距离为z坐标坐标n【例例6-2】已知点已知点A(18、12、14),求作点,求作点A的三面投影图的三面投影图n解:n(a)在OX轴上取Oax=18mm;n(b)过ax作OX轴的垂直线,在其上取aax=12mm,aax=14mm,得a和a;n(c)根据a和a求出an(二)特殊位置点的投影(二)特
22、殊位置点的投影1投影面上的点投影面上的点n如果点A在H面上,坐标z等于零。n投影面上点的投影特点:投影面上的点,一个投影为该点所在投影面上的原来位置,其余两个投影分别在围成该投影面的两个投影轴上n投影轴上的点投影轴上的点nB在OX轴上,坐标y、z都等于零n投影轴上点的投影特点:投影轴上点的投影,有两个投影在同一投影轴上,另一个投影在坐标原点n坐标原点的点坐标原点的点nC在坐标原点O上,x、y、z三个坐标都等于零n在特殊位置点的三面投影图中,空间点可不标注,其三个投影的符号,应写在相应的投影面上第二节第二节 直线的投影直线的投影n二、各种位置直线及投影特性二、各种位置直线及投影特性n(一)投影面
23、的平行线(一)投影面的平行线 n平行于一个投影面而倾斜于另两个投影面的直线,称为投影面平行线n1 水平线水平线(平行于H面,倾斜于V、W面的直线)n2 正平线正平线,平行于V面,倾斜于H、W面的直线。n3 侧平线侧平线,平行于W面,倾斜于H、V面的直线n投影特性:投影特性:lab OXlab OYWl ab=ABl反映反映、实角实角lcd OXlcd OZlcd=CDl3反映反映、实角侧平线实角侧平线l1 ef OYHlef OZlef=EFl反映反映、实角实角n(一)投影面的垂直线(一)投影面的垂直线n重直于一个投影面而平行于另两个投影面的直线,称为投影面垂直线n(1)铅垂线铅垂线,垂直于H
24、面,平行于V、W面的直线。n(2)正垂线正垂线,垂直于V面,平行于H、W面的直线。n(3)侧垂线侧垂线,垂直于W面,平行于H、V面的直线n投影特性:投影特性:lab积聚成一点积聚成一点lab OXlab OYWlab=ab=ABlcd积聚成一点积聚成一点lcd OXlcd OZlcd=cd=CDlef积聚成一点积聚成一点l ef OYHlef OZl ef=ef=EFn(三)一般位置直线(三)一般位置直线n与三个投影面均倾斜的直线,称为一般位置直线n投影特性投影特性:n(1)直线倾斜于投影面,则三个投影均为倾斜于投影轴的直线,且不反映实长。n(2)直线的三个投影与投影轴的夹角,均不反映直线对投
25、影面的倾角n三、直线上的点三、直线上的点n(一)直线上点的投影(一)直线上点的投影 n判定原则:判定原则:投影点在直线上,则点的各投影必定在该直线的同面投影上,并且符合点的投影规律;反之,如果点的各投影均在直线的同面投影上,且各投影符合点的投影规律,则该点必在直线上n实例:实例:ne在ab上,e在ab上,且ee连线垂直于OX轴,则空间点E在直线AB上;nf在ab上,f不在ab上,则空间点F不在直线AB上n(二)直线上的点分割线段成定比(二)直线上的点分割线段成定比n直线上一点,把直线分成两段,则两段的长度之比,等于它们的投影长度之比。这种比例关系称为定比关系n【例例6-5】已知直线AB的投影a
26、b和ab,所示,求作直线上一点C的投影,使ACCB=32n解:n(1)过点a作一直线,在直线上量取5个单位,得分点1、2、3、4、5,连接b5。n(2)过点3作b5的平行线,与ab相交于点c。n(3)过c作OX轴的垂线并延长交ab于c,则c、c即为所求cc第三节第三节 平面的投影平面的投影n一、平面的表示法一、平面的表示法n(1)不在同一直线上的三点 n(2)一直线及线外一点n(3)两相交直线 n(4)两平行直线 n(5)平面图形n二、平面投影图做法二、平面投影图做法n平面是由点、线所围成的。因此,求作平面的投影,实质上是求作点和线的投影n做空间一平面ABC的三面投影 n其三个顶点A、B、C的
27、三面投影作出n将各点的同面投影连接起来,即为平面ABC的投影n三、各种位置平面及投影特性三、各种位置平面及投影特性n(一一)投影面平行面投影面平行面n平行于一个投影面而垂直于另外两个投影面的平面,称为投影面平行面。n(1)水平面水平面,平行于H面,垂直于V、W面的平面。n(2)正平面正平面,平行于V面,垂直于H、W面的平面。n(3)侧平面侧平面,平行于W面,垂直于H、V面的平面。n投影特性:投影特性:l水平投影反映实形水平投影反映实形l2正面投影及侧面投影积聚成一直线,且分别平行于正面投影及侧面投影积聚成一直线,且分别平行于OX轴及轴及OYW轴轴l正面投影反映实形正面投影反映实形l水平投影及侧
28、面投影积聚成一直线,且分别平行于水平投影及侧面投影积聚成一直线,且分别平行于OX轴及轴及OZ轴轴l侧面投影反映实形侧面投影反映实形l水平投影及正面投影积聚成一直线,且分别平行于水平投影及正面投影积聚成一直线,且分别平行于OY轴及轴及OZ轴轴n(二二)投影面垂直面投影面垂直面n垂直于一个投影面而倾斜于另外两个投影面的平面,称为投影面垂直面n(1)铅垂面铅垂面,垂直于H面,倾斜于V、W面的平面。n(2)正垂面正垂面,垂直于V面,倾斜于H、W面的平面。n(3)侧垂面侧垂面,垂直于W面,倾斜于H、V面的平面n投影特性:投影特性:l水平投影积聚成一直线,并反映对水平投影积聚成一直线,并反映对V、W面的倾
29、角面的倾角、l正面投影和侧面投影为平面的类似形正面投影和侧面投影为平面的类似形l正面投影积聚成一直线,并反映对正面投影积聚成一直线,并反映对H、W面的倾角面的倾角、l水平投影和侧面投影为平面的类似形水平投影和侧面投影为平面的类似形l侧面投影积聚成一直线,并反映对侧面投影积聚成一直线,并反映对H、V的倾角的倾角、l水平投影和正面投影为平面的类似形水平投影和正面投影为平面的类似形n(三三)一般位置平面一般位置平面n与三个投影面均倾斜的平面,称为一般位置平面n投影特性:投影特性:n平面倾斜于投影面,则三个投影既没有积聚性,也不反映实形,而是原平面图形的类似形。根据一般位置平面的投影特性,可判别平面与
30、投影面的相对位置。n即“三个投影三个框三个框n定是一般位置面。”斜线斜线框框框框两框一斜线,定是垂直面两框一斜线,定是垂直面框框框框框框三个投影三个投影三个框三个框,定是一般位置面,定是一般位置面框框直线直线直线直线一框两直线一框两直线,定是平行面定是平行面n四、平面上的直线和点四、平面上的直线和点n(一)平面上的直线(一)平面上的直线n(1)一直线若通过平面内的两点,则此直线必位于该平面上。n直线DE上的点D在ABC的BC边上,点E在AC边上,故直线DE在ABC上。n(2)一直线通过平面上的一点,且平行于平面上的另一条直线,则此直线必位于该平面上。n直线BG通过平面ABC上的一点B,且平行于
31、AC,故直线BG在ABC上n【例例6-8】过点A在已知ABC上,如图620(a)所示,作一正平线。n作法如下:作法如下:n(1)过a作一平行于OX轴的直线与bc相交于d,自d向上引垂线交bc于d n(2)连接ad,则ad与ad即为所求ddn(二二)平面上的点平面上的点 n如果一点在直线上,直线在平面上,则点必位于平面上n点F在直线DE上,n而DE在平面ABC上,n因此,点F在平面ABC上n【例例6-9】已知ABC及其上一点M的水平投影m,如图622(a)所示,求作M的正面投影m。n作法如下:n(1)连接am并延长交bc于d,自d向上引垂线交bc于dn(2)连接ad,自m向上引垂线交ad于m,则
32、m即为所求ddmn【例例6-10】已知四边形ABCD的水平投影和AB、AD两边的正面投影,完成四边形ABCD的正面投影。n作法如下:n(1)连接ac、bd交于e,过e向上引垂线与bd相交于e n(2)过c向上引垂线与ae的延长线相交于c,连接bc、cd即为所求,如图623(c)所示eec第七章第七章 基本体的投影基本体的投影第一节第一节 平面体的投影平面体的投影n一、棱柱体和棱锥体的投影一、棱柱体和棱锥体的投影n(一一)棱柱体的投影棱柱体的投影n1棱柱体的形成n上下底面为两个全等三角形平面且互相平行;侧面均为四边形,且每相邻两个四边形的公共边都互相平行。由这些平面组成的基本几何体为棱柱体,当底
33、面为n边形时所组成的棱柱为n棱柱n2 投影分析n在水平面上正三棱柱的投影为一个三角形线框。n在正立面上正三棱柱的投影为两个并排的矩形线框。n在侧立面上正三棱柱的投影为一个矩形线框,该线框为上下底面投影的重合,且反映实形。三条边该线框为上下底面投影的重合,且反映实形。三条边分别是三个侧面的积聚投影。三个顶点分别为三条侧棱分别是三个侧面的积聚投影。三个顶点分别为三条侧棱的积聚投影的积聚投影 两个矩形的外围两个矩形的外围(即轮廓矩形即轮廓矩形)是左右侧面与后侧面投影的重是左右侧面与后侧面投影的重合。三条铅垂线是三条侧棱的投影,并反映实长。两条水平合。三条铅垂线是三条侧棱的投影,并反映实长。两条水平线
34、是上下底面的积聚投影线是上下底面的积聚投影两条铅垂线分别为后侧面的积聚投影及左右侧面的两条铅垂线分别为后侧面的积聚投影及左右侧面的交线的投影。两条水平线是上下底面的积聚交线的投影。两条水平线是上下底面的积聚投影投影3投影特性投影特性 棱柱的三面投影,在一个投影面上是多边形,在棱柱的三面投影,在一个投影面上是多边形,在另两另两 个投影面上分别是一个或者是若干个矩形。个投影面上分别是一个或者是若干个矩形。n(二二)棱锥体的投影棱锥体的投影n1棱柱体的形成n它的底面为三角形,侧面均为具有公共顶点的三角形。由这些平面组成的基本几何体为棱锥体,当底面为n边形时所组成的棱锥为n棱锥n2 投影分析n在水平面
35、上正三棱锥的投影为由三个三角形线框围成的大三角形线框。n在正立面上正三棱锥的投影为三角形线框。n在侧立面上正三棱锥的投影为三角形线框。外形三角形线框是底面的投影,反映实形。顶外形三角形线框是底面的投影,反映实形。顶点的投影点的投影S在三角形中心,它与三个角点的连线在三角形中心,它与三个角点的连线是三条侧棱的投影。三个小三角形是三个侧面是三条侧棱的投影。三个小三角形是三个侧面的投影。的投影。水平线是底面的积聚投影;两条斜边和中水平线是底面的积聚投影;两条斜边和中间铅垂线是三条侧棱的投影。三角形线框间铅垂线是三条侧棱的投影。三角形线框内的小三角形分别为左右侧面的投影,外内的小三角形分别为左右侧面的
36、投影,外形三角形线框为后侧面的投影。形三角形线框为后侧面的投影。水平线是底面的积聚投影,斜边分别为后侧水平线是底面的积聚投影,斜边分别为后侧面的积聚投影及侧棱的投影。三角形线框是面的积聚投影及侧棱的投影。三角形线框是左右两个侧面的重合投影。左右两个侧面的重合投影。3投影特性投影特性:一个投影的外轮廓线为多边形,一个投影的外轮廓线为多边形,另两个投影为一个或若干个具有公共顶点的三角形。另两个投影为一个或若干个具有公共顶点的三角形。n综合上面两个例子,可知平面体的投影特点:n1)求平面体的投影,实质上就是求点、直线和平面的投影。n2)投影图中的线段可以仅表示侧棱的投影,也可能是侧面的积聚投影。n3
37、)投影图中线段的交点,可以仅表示为一点的投影,也可能是侧棱的积聚投影。n4)投影图中的线框代表的是一个平面。n5)当向某投影面作投影时,凡看得见的侧棱用实线表示,看不见的侧棱用虚线表示,当两条侧棱的投影重合时,仍用实线表示。n二、平面体投影图的画法二、平面体投影图的画法n(1)已知四棱柱的底面及柱高,作四棱柱的投影图n(a)画基准线及反映底面实形的水平投影;n(b)按投影关系及柱高,作出正面投影和侧面投影;n(c)检查整理底图,加深图线n(2)已知六棱锥的底面及柱高,作六棱锥的投影图n(a)画基准线及反映底面实形的水平投影;n(b)按投影关系及柱高,作出正面投影和侧面投影;n(c)检查整理底图
38、,加深图线n n三、平面图投影的尺寸标注三、平面图投影的尺寸标注n须标注出形体的长、宽、高,尺寸要齐全,避免重复。n长、宽尺寸应注写在反映实形的投影图上,高度尺寸尽量注写在正面和侧面投影图之间n四、平面体表面上的点和直线四、平面体表面上的点和直线n(一一)棱柱体表面上的点和直线棱柱体表面上的点和直线n在四棱柱体侧面ABFE上有一点M,在侧面DCGH上有一点N。n侧面ABFE为铅垂面,其水平投影积聚为一直线,其正面投影、侧面投影为矩形线框。n点M的水平投影m在侧面ABFE的积聚水平投影上,根据m、m,可求得m。同理,可求得n、n。mn n在三棱柱体侧面ABED上有一直线MN。n其侧面ABED为铅
39、垂面,其水平投影积聚成一直线,正面投影和侧面投影分别为一矩形,直线MN的水平投影mn在三棱柱侧面ABED的水平投影上,即在侧面ABED的积聚线上n正面投影mn和侧面投影mn分别在侧面ABED的正面投影和侧面投影内。n因三棱柱侧面ABED与ADFC的侧面投影重合,侧面ABED的侧面投影不可见,所以直线MN的投影mn用虚线表示。nmn(二(二)棱锥体表面上的点和直线棱锥体表面上的点和直线n棱锥体表面上点和直线投影的求解采用辅辅助线法助线法n在三棱锥侧面SAB上有一点K,侧面SAB为一般位置平面,其三面投影为三个三角形线框。由于点K在侧面SAB上,因此点K的三面投影必定在侧面SAB上过点K的直线SF
40、上。作图时,过点K作一直线SF,点K在直线SF上,则点K的三面投影在直线SF的三面投影上Fkkn在三棱锥侧面SBC上有一直线MNn侧面SBC为一般位置平面,其三面投影为三个三角形线框。直线MN的三面投影mn、mn和mn分别在三棱锥侧面SBC的同面投影内,由于点N在侧棱SB上,点N可按直线上求点的方法求得。点M的投影用辅助线法可以求得。然后将M、N点的同面投影直线连接即为MN的投影。n求得投影后还需判别可见性。由于SBC的侧面投影不可见,直线MN的侧面投影mn亦为不可见,故用虚线表示mn五、平面体的截交线五、平面体的截交线n平面体被一个或多个平面截割,必然在平面体表面上产生交线。假想用来截割平面
41、体的平面称为截平面截平面,截平面与平面体表面的交线称为截交线截交线,截交线围成的平面图形称为断面断面nR为截平面截平面,nDE、FD、EF为截交线截交线,n平面图形DEF为断面断面n1棱柱上的截交线棱柱上的截交线n【例例71】已知正三棱柱被正垂面P所截,求截交线的投影n作图作法:作图作法:n因截平面P为正垂面,断面ABC在正立面上的投影abc即为可知;又因为三棱柱在水平面上投影的积聚性,所以abc可知n再利用投影规律可求得a、b、cn然后连接a、b、c,并判断可见性。因为A点在左棱上,可见;B点在前面的棱线上,可见;C点在右侧棱上并且高于A、B点,也可见。故abc画为实线abcabcabcn1
42、 棱锥上的截交线棱锥上的截交线n【例例72】已知正四棱锥被正垂面P所截,求截交线的投影n作图作法:作图作法:n因为A点在四棱锥的左侧棱上,所以由a向下作竖直线交四棱锥左边棱线的水平投影于a;同理,由c可求出cn由于四棱锥的前后棱线为侧平线,水平投影不能直接求出,所以过b(d)作一水平线交左棱线于e,同理则可求得水平投影en再过e作左侧前后底边的平行线,交前、后棱的水平投影于两点b、d。连a、b、c、d即为截交线的水平投影;然后判断可见性,因为截交线所在立体表面的投影均可见,故截交线可见acb(d)eacbde第二节第二节 曲面体的投影曲面体的投影n一、圆柱体、圆锥体和球体的投一、圆柱体、圆锥体
43、和球体的投影影n(一一)圆柱体的投影圆柱体的投影n1圆柱体的形成n一直线AA1绕与其平行的另一直线OO1旋转一周后,其轨迹是一圆柱面n直线OO1为轴轴n直线AA1为母线母线n母线在圆柱面上任意位置时称为素线素线n2 投影分析n水平面上圆柱体的投影是一个圆n正立面上圆柱体的投影是一个矩形线框,是看得见的前半个圆柱面和看不见的后半个圆柱面投影的重合n侧立面上圆柱体的投影是与正立面上的投影完全相同的矩形线框,是看得见的左半个圆柱面和看不见的右半个圆柱面投影的重合它是上下底面投影的重合,反映实形。圆心是轴线的积聚投影,圆周是整个圆柱面的积聚投影。矩形的高等于圆柱体的高,矩形的宽等于圆柱体的直径。ab、
44、a1b1是圆柱上下底面的积聚投影。aa1、bb1是圆柱最左、最右轮廓素线的投影,最前、最后轮廓素线的投影与轴线重合且不是轮廓线,所以仍然用细单点长画线画出 矩形的高等于圆柱体的高,矩形的宽等于圆柱体的直径。dc、d1c1是上下两底面的积聚投影。cc1、dd1是圆柱最前、最后的轮廓素线的投影,最左、最右轮廓素线的投影与轴线重合且不是轮廓线,所以仍然用细单点长画线画出3投影特性投影特性 圆柱的三面投影,一个投影是圆,另圆柱的三面投影,一个投影是圆,另两个投影为全等的矩形两个投影为全等的矩形。n(二二)圆锥体的投影圆锥体的投影n1圆锥体的形成n由一条直线(母线SN)以与其相交于点S的直线(导线SO)
45、为轴回转一周所形成的曲面为圆锥面。n母线在圆锥面上任一位置时称为圆锥面的素线素线n2 投影分析n水平面上圆锥体的投影是一个圆n在正立面上圆锥体的投影是一个三角形线框n在侧立面上圆锥体的投影是一个三角形线框,与正立面上的投影三角形线框是全等的 它是圆锥面和圆锥体底面的重合投影,反映底面的实形。圆的半径等于底圆的半径,圆心是轴线的积聚投影,锥顶的投影落在圆心上。三角形的高等于圆锥体的高,三角形的底边长等于底圆的直径。三角形线框是看见的前半个圆锥面和看不见的后半个圆锥面投影的重合。sa、sb是圆锥面最左、最右两条轮廓素线的投影,最前、最后轮廓素线的投影与轴线重合且不是轮廓线,所以仍然用细单点长画线画
46、出。n它是看得见的左半个圆锥面和看不见的右半个圆锥面投影的重合。sc、sd是圆锥面最前、最后两条轮廓素线的投影,最左、最右两条轮廓素线的投影与轴线重合且不是轮廓线,所以仍然用细单点长画线画出。轴线的投影用细单点长画线画出3投影特性投影特性 圆锥的三面投影,一个投影是圆,另两个投圆锥的三面投影,一个投影是圆,另两个投影是全等的三角形影是全等的三角形n(二二)球体的投影球体的投影n1 球体的形成n以圆周为母线,绕着其本身的任意直径为轴回转一周所形成的曲面为球面n2 投影分析n水平面上球体的投影是一个圆n正立面上球体的投影是与水平投影全等的圆n侧立面上球体的投影是与水平投影和正立投影都全等的圆 它是
47、看得见的上半个球面和看不见的下半个球面投影的重合,该圆周是球面上平行于水平面的最大圆的投影。它是看得见的前半个球面和看不见的后半个球面投影的重合,该圆周是球面上平行于正立面的最大圆的投影。n它是看得见的左半个球面和看不见的右半个球面投影的重合,该圆周是球面上平行于侧立面的最大圆的投影 3 投影特性投影特性 球体的三面投影,是三个全等的圆,球体的三面投影,是三个全等的圆,圆的直径等于球径圆的直径等于球径n二、曲面体投影图的画法二、曲面体投影图的画法n(1)圆柱体投影图的画法n(a)画中心线及反映底面实形的投影n(b)按投影关系及柱高,作出正面投影和侧面投影n(c)检查整理底图,加深图线n四、曲面
48、体表面的点和线四、曲面体表面的点和线n(一)圆柱体表面的点和线(一)圆柱体表面的点和线n求圆柱体表面上的点和线的投影,可利用圆柱表面投影的积聚性积聚性来解决n【例例7-3】已知圆柱体上线段MKN的V面投影,求该线段的另两面投影n投影图作法:n(1)由于圆柱在水平面上投影积聚成一个圆,MKN线段在圆柱的前半个圆柱面上,故过m、n,作竖直线与圆柱水平投影的前半个圆周相交,可得m、n,而K点正好在圆柱的最前轮廓线上,可求得k;由二求三可得m、n、k n(2)判断可见性。MK在左前圆柱面上,故mk可见,而KN在右前圆柱面上,所以kn不可见。n(3)用光滑的实线连mk,用光滑的虚线连kn即可mnkm(n
49、)kn(二)圆锥体表面的点和线(二)圆锥体表面的点和线n求圆锥体表面上的点和线的投影,可采用两种方法求解,即素线法素线法和纬圆法纬圆法。n1素线法n【例例7-4】已知圆锥体表面上点K的正面投影,求另两面投影n(1)过K点的正面投影k作直线sk交三角形的底边于e,则E点在圆锥底面上,因此E点的水平投影e落在圆锥水平投影的圆周上;又E点在前半个圆锥面上,从而水平投影e又落在前半个圆周上。过e作OX的垂线交圆周于e,连s、e。n(2)利用点在线上的投影,过k作OX的垂线交se于点k,再利用投影规律即可求出k。n(3)判断可见性。K点在左半个圆锥面上,所以k、k可见eekkn【例例7-5】已知圆锥体表
50、面上线段ABCD的正面投影,求另两面投影n投影图作法:n(1)过A点的正面投影a作直线sa,交三角形的底边于e,则E点在圆锥底面上,因此E点的水平投影e落在圆锥水平投影的圆周上,又E点在前半个圆锥面上,从而水平投影e又落在前半个圆周上。过e作OX的垂线交圆周于e,连se。n(2)利用点在线上的投影,过a作OX的垂线交se于a,再利用投影规律即可求出a。同理可求得b、c、d、b、c、d。n(3)判断可见性。A、B、C点在左前半个圆锥面上,所以a、b、c、a、b、c可见。而D点在右前半个圆柱面上,所以d不可见。用光滑的实线连a、b、c,用光滑的虚线连c、d即可。n2 纬圆法n【例例7-6】用纬圆法