数学模型与数学建模2ppt课件.ppt

上传人:豆**** 文档编号:59791779 上传时间:2022-11-13 格式:PPT 页数:38 大小:661.50KB
返回 下载 相关 举报
数学模型与数学建模2ppt课件.ppt_第1页
第1页 / 共38页
数学模型与数学建模2ppt课件.ppt_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《数学模型与数学建模2ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学模型与数学建模2ppt课件.ppt(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学模型与数学建模2ppt课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望现代数学:现代数学:在理论上更抽象;在理论上更抽象;在方法上更加综合;在方法上更加综合;在应用上更为广泛。在应用上更为广泛。一、一、现代科技人员应具有的数学能力现代科技人员应具有的数学能力*数学很重要的一方面在于数学知识与数数学很重要的一方面在于数学知识与数学方法的应用学方法的应用.*更重要的方面是数学的思维方式的确立更重要的方面是数学的思维方式的确立.21世纪科技人才应具备的数学素质与

2、能力世纪科技人才应具备的数学素质与能力 数数学学运运算算能能力力 逻逻辑辑推推理理能能力力数数学学建建模模能能力力数数据据处处理理能能力力空空间间想想象象能能力力抽抽象象思思维维能能力力更更新新数数学学知知识识能能力力使使用用数数学学软软件件能能力力二、数学模型与数学建模二、数学模型与数学建模数学模型数学模型(Mathematical Model):):重结果;重结果;模型模型:所研究的客观事物有关属性的模拟所研究的客观事物有关属性的模拟,具有事物中感兴趣的主要性质。具有事物中感兴趣的主要性质。*对实体本身的模拟对实体本身的模拟 如如:飞机形状进行模拟的模型飞机;飞机形状进行模拟的模型飞机;数

3、学建模数学建模(Mathematical Modeling):重过程重过程.*对实体某些属性的模拟对实体某些属性的模拟 如如:对飞机性能进行模拟的航模比赛飞机对飞机性能进行模拟的航模比赛飞机;*对实体某些属性的抽象对实体某些属性的抽象 如如:一张地质图是某地区地貌情况的抽象一张地质图是某地区地貌情况的抽象 任何一个模型仅为一个真实系统某一任何一个模型仅为一个真实系统某一方面的理想化,决不是真实系统的重现方面的理想化,决不是真实系统的重现.数学模型数学模型(E.A.Bendar 定义定义):关于部分现实世界为一定目的而做的抽关于部分现实世界为一定目的而做的抽象、简化的数学结构。象、简化的数学结构

4、。数学模型是现实世界的简化而本质的描述数学模型是现实世界的简化而本质的描述。是用数学符号、数学公式、程序、图、是用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系表等刻画客观事物的本质属性与内在联系的理想化表述的理想化表述.治愈治愈 瘫痪瘫痪 死亡死亡 状态(可能)状态(可能)行动行动(人能控制)(人能控制)等待等待治疗治疗例例1 大夫的决策问题大夫的决策问题 此模型此模型(数学结构数学结构)表达了大夫能做什么表达了大夫能做什么,可能出现的结果可能出现的结果.可帮助我们明确大夫的决策取决于目标的可帮助我们明确大夫的决策取决于目标的设定及治疗原则等设定及治疗原则等.数学模型是思

5、考的工具数学模型是思考的工具 构造一个数学模型可帮助我们进行交流、构造一个数学模型可帮助我们进行交流、获得理解、加强对所采取的行动及结果的预获得理解、加强对所采取的行动及结果的预测能力,它应有助于思考过程测能力,它应有助于思考过程.例例2.厂长经理们筹划出一个合理安排生产厂长经理们筹划出一个合理安排生产和销售的数学模型,是为了获取尽可能高和销售的数学模型,是为了获取尽可能高的经济效益的经济效益.例例3.生物医学专家有了药物浓度在人体生物医学专家有了药物浓度在人体内随时间和空间变化的数学模型后,可以内随时间和空间变化的数学模型后,可以用来分析药物的疗效,从而有效地指导临用来分析药物的疗效,从而有

6、效地指导临床用药床用药.诺贝尔经济学奖获得者诺贝尔经济学奖获得者建立了大量的数建立了大量的数学模型,为世界经济发展做出卓越贡献:学模型,为世界经济发展做出卓越贡献:人类时间价格模型;人类时间价格模型;教师与毕业生的增长模型;教师与毕业生的增长模型;房屋出售问题模型;房屋出售问题模型;最优消费和组合投资问题;最优消费和组合投资问题;Selton 连锁店博弈模型;连锁店博弈模型;平稳人口模型;平稳人口模型;固定汇率和浮动汇率的货币动力学固定汇率和浮动汇率的货币动力学人类时间价格的度量;人类时间价格的度量;考虑技术进步的生产函数考虑技术进步的生产函数.数学模型是沟通现实世界数学模型是沟通现实世界与数

7、学世界的理想桥梁。与数学世界的理想桥梁。现现实实世世界界数数学学世世界界建立数学模型建立数学模型推理推理演绎演绎求解求解翻译为实际解答翻译为实际解答实际解答实际解答:如对现实对象的分析、预报、如对现实对象的分析、预报、决策、控制等结果。决策、控制等结果。始于现实世界并终于现实世界始于现实世界并终于现实世界 一个较热的物体置于室温为一个较热的物体置于室温为180c的房间的房间内,该物体最初的温度是内,该物体最初的温度是600c,3分钟以后分钟以后降到降到500c.想知道它的温度降到想知道它的温度降到300c 需要多需要多少时间?少时间?10分钟以后它的温度是多少?分钟以后它的温度是多少?牛顿冷却

8、(加热)定律:牛顿冷却(加热)定律:将温度为将温度为T的的物体放入处于常温物体放入处于常温 m 的介质中时,的介质中时,T的变的变化速率正比于化速率正比于T与周围介质的温度差。与周围介质的温度差。作案时间的确定作案时间的确定 三、建模范例三、建模范例 分析:分析:假设房间足够大,放入温度较低或假设房间足够大,放入温度较低或较高的物体时,室内温度基本不受影响,即较高的物体时,室内温度基本不受影响,即室温分布均衡室温分布均衡,保持为保持为m,采用牛顿冷却定律,采用牛顿冷却定律是一个相当好的近似。是一个相当好的近似。建立模型:建立模型:设物体在冷却过程中的温度为设物体在冷却过程中的温度为T(t),t

9、0,“T的变化速率正比于的变化速率正比于T与周围介质的温度差与周围介质的温度差”翻译为翻译为建立微分方程建立微分方程其中参数其中参数k 0,m=18.求得一般解为求得一般解为 ln(Tm)=k t+c,代入条件,求得代入条件,求得c=42,k=,最后得最后得结果结果:T(10)=18+42 =25.870,该物体温度降至该物体温度降至300c 需要需要8.17分钟分钟.T(t)=18+42 ,t 0.将一张四条腿一样长的方桌放在不平的将一张四条腿一样长的方桌放在不平的地面上地面上,问是否总能设法使它的四条腿同时问是否总能设法使它的四条腿同时着地?着地?假设假设*1 地面为连续曲面地面为连续曲面

10、.(在(在Oxyz坐标系中,地坐标系中,地 面可用一个连续二元函数面可用一个连续二元函数 z=z(x,y)表示)表示)*2 相对于地面的弯曲程度相对于地面的弯曲程度,方桌的腿足够长方桌的腿足够长.*3 将与地面的接触看成几何上的点接触将与地面的接触看成几何上的点接触.稳定的椅子稳定的椅子 建模建模 绘制方桌的俯视图,设想桌子绕中心绘制方桌的俯视图,设想桌子绕中心O点点旋转,转动角度记为旋转,转动角度记为.OABCDAC引进函数变量:引进函数变量:f()A、C 两腿到地面的距离之和;两腿到地面的距离之和;g()B、D 两腿到地面的距离之和;两腿到地面的距离之和;由假设由假设*1*1,f()、g(

11、)都是连续函数。都是连续函数。由由*2,方桌腿足够长,至少有三条腿总能,方桌腿足够长,至少有三条腿总能同时着地,故有同时着地,故有 f()g()=0,0,2不妨设不妨设 f(0)=0、g(0)0.方桌问题归结为方桌问题归结为数学问题:数学问题:已知已知 f()和和 g()都是连续函数都是连续函数,f(0)=0、g(0)0,且对任意且对任意0,2,都有都有f()g()=0,分析:分析:当当=/2时时,即即AC 和和 BD互换位置互换位置,故有故有 f(/2)0,g(/2)=0令令 h()=f()g(),则有则有 求证:求证:存在存在0,使得使得f(0)=g(0).因因 h()在在 0,/2上连续

12、,根据闭区间上连续,根据闭区间上连续函数的介值定理,存在上连续函数的介值定理,存在00,/2,使使h(0)=f(0)g(0)=0 h(0)0,h(/2)0,f(0)=g(0)因对任意因对任意有有,f()g()=0 f(0)g(0)=0 f(0)=g(0)=0 结论结论 对于四条腿等长,四脚呈正方形的对于四条腿等长,四脚呈正方形的桌子,在光滑地面上做原地旋转,在不大桌子,在光滑地面上做原地旋转,在不大于于/2的角度内,必能放平的角度内,必能放平.思考题:思考题:任意矩形的桌子会怎样?任意矩形的桌子会怎样?一场笔墨官司(放射性废物的处理问题)一场笔墨官司(放射性废物的处理问题)美国原子能委员会(现

13、为核管理委员会)美国原子能委员会(现为核管理委员会)处理浓缩放射性废物,是将废物放入密封处理浓缩放射性废物,是将废物放入密封性能很好的圆桶中,然后扔到水深性能很好的圆桶中,然后扔到水深300英英尺的海里尺的海里.他们这种做法他们这种做法安全安全吗?吗?分析:分析:可从各个角度去分析造成危险的可从各个角度去分析造成危险的因素,这里仅考虑圆桶泄露的可能因素,这里仅考虑圆桶泄露的可能.联想:联想:安全安全 、危险、危险问题的关键问题的关键 *圆桶至多能承受多大的圆桶至多能承受多大的冲撞速度冲撞速度?(40英英尺尺/秒秒););*圆桶和海底碰撞时的速度有多大?圆桶和海底碰撞时的速度有多大?新问题:新问

14、题:求这一种桶沉入求这一种桶沉入300英尺的海英尺的海底时的末速度底时的末速度.(原问题是什么(原问题是什么?)可利用的数据条件:可利用的数据条件:圆桶的总重量圆桶的总重量 W=527.327(磅)(磅)圆桶受到的浮力圆桶受到的浮力 B=470.327(磅)(磅)圆桶下沉时受到的海水阻力圆桶下沉时受到的海水阻力 D=Cv,C=0.08 可利用牛顿第二定律,建立圆桶下沉位可利用牛顿第二定律,建立圆桶下沉位移满足的微分方程:移满足的微分方程:方程的解为方程的解为 计算碰撞速度,需确定圆桶和海底的碰计算碰撞速度,需确定圆桶和海底的碰撞时间撞时间t0 0?分析:分析:考虑圆桶的极限速度考虑圆桶的极限速

15、度713.86(英尺(英尺/秒)秒)40(英尺(英尺/秒)秒)原问题得到解决了吗原问题得到解决了吗?极限速度极限速度与圆桶的与圆桶的承受速度承受速度相差巨大!相差巨大!结论:结论:解决问题的方向是正确的解决问题的方向是正确的.解决思路:解决思路:避开求避开求t0的难点的难点 令令 v(t)=v(y(t),其中其中 y=y(t)是圆桶下沉深度是圆桶下沉深度.代入(代入(1)得)得两边积分得函数方程:两边积分得函数方程:若能求出函数若能求出函数v=v(y),就可求出碰撞速度就可求出碰撞速度v(300).(.(试一试试一试)*用用数值方法数值方法求出求出v(300)的近似值为的近似值为 v(300)

16、45.41(英尺英尺/秒秒)40(英尺英尺/秒秒)*分析分析 v=v(y)是一个单调上升函数,而是一个单调上升函数,而v 增大增大,y 也增大也增大,可求出函数可求出函数 y=y(v)令令 v=40(英尺英尺/秒秒),g=32.2(英尺英尺/秒秒),),算出算出y=238.4(英尺英尺)300(英尺英尺)问题的实际解答:问题的实际解答:美国原子能委员会处理放射性废物的做美国原子能委员会处理放射性废物的做法是极其危险的,法是极其危险的,必须改变必须改变.四、数学建模的教与学四、数学建模的教与学 创建一个数学模型的全过程称为数学创建一个数学模型的全过程称为数学建模,即运用数学的语言、方法去近似地建

17、模,即运用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过刻画该实际问题,并加以解决的全过程。程。数学模型是对于现实世界的一个数学模型是对于现实世界的一个特定特定对象对象,为了一个,为了一个特定目的特定目的,根据特有的内,根据特有的内在规律在规律,做出必要的做出必要的简化假设简化假设,运用适当,运用适当的数学工具建立的一个的数学工具建立的一个数学结构数学结构.1.数学建模极富数学建模极富创造性创造性;2.数学建模具有很强的数学建模具有很强的综合性;综合性;3.数学建模具有很强的数学建模具有很强的实践性实践性;不是数学知识的简单应用:不是数学知识的简单应用:需要全面的综合素质及能力。需要

18、全面的综合素质及能力。1.科学地识别和剖析问题;科学地识别和剖析问题;2.建立数学模型;建立数学模型;3.对研究中所选择的模型求解数学问题;对研究中所选择的模型求解数学问题;4.对有关计算提出算法和设计计算机程序;对有关计算提出算法和设计计算机程序;5.解释原问题的结论并评判这些结论。解释原问题的结论并评判这些结论。建立数学模型是关键而重要的一步建立数学模型是关键而重要的一步.数学建模是所涉及到的纯数学和其它学科数学建模是所涉及到的纯数学和其它学科相互作用的一个过程相互作用的一个过程.可概括为五个阶段:可概括为五个阶段:学习困难:学习困难:(1)“学着用学着用”数学和数学和“学习学习”数学根数

19、学根本不同在于明白在何处用数学,怎样用数本不同在于明白在何处用数学,怎样用数学;学;(2)掌握成功运用数学建立数学模型掌握成功运用数学建立数学模型所需的技能与理解数学概念、证明定理、所需的技能与理解数学概念、证明定理、求解方程所需的技巧迥然不同。求解方程所需的技巧迥然不同。建议:建议:去做!去实践!去做!去实践!学着用,干中学!学着用,干中学!课程特点课程特点:以介绍数学建模的一般方以介绍数学建模的一般方法为主线,着重训练运用数学知识建立数学法为主线,着重训练运用数学知识建立数学模型的技能技巧,着重能力和相关素质的培模型的技能技巧,着重能力和相关素质的培养。养。理解数学知识的基础上,重点是数学理解数学知识的基础上,重点是数学方法的掌握、数学思维的建立。方法的掌握、数学思维的建立。教教学学目目标标 培养培养“翻译翻译”能力能力 培养用数学思想方法的综合应培养用数学思想方法的综合应用分析能力用分析能力 培养想象力培养想象力发展观察力,形成洞察力发展观察力,形成洞察力 培养交流与表达的能力培养交流与表达的能力 熟练使用技术手段熟练使用技术手段 科技论文写作能力科技论文写作能力 努力不一定成功努力不一定成功放弃一定是失败放弃一定是失败

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁