《临沂氢项目实施方案【模板】.docx》由会员分享,可在线阅读,更多相关《临沂氢项目实施方案【模板】.docx(131页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/临沂氢项目实施方案临沂氢项目实施方案xxx(集团)有限公司报告说明电耗成本是现阶段电解水制氢降本的关键因素之一。电耗成本在电解水制氢成本中占比最高,AWE、PEM电解水分别约为85.93%、63.18%,其次为折旧成本,AWE、PEM电解水分别约为9.77%、26.07%,这两项成本占比均达到总成本的90%。由于人工运维和原料属于刚性支出,降本路径主要依赖电解槽电解效率提高和可再生能源制氢电力成本下降带来的电耗成本降低、电解槽成本下降带来的折旧减少、单台制氢产量增加带来的固定成本均摊下降。根据谨慎财务估算,项目总投资16282.81万元,其中:建设投资13091.10万元,占项目总投
2、资的80.40%;建设期利息138.76万元,占项目总投资的0.85%;流动资金3052.95万元,占项目总投资的18.75%。项目正常运营每年营业收入28600.00万元,综合总成本费用22159.74万元,净利润4715.05万元,财务内部收益率23.32%,财务净现值9151.52万元,全部投资回收期5.30年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。由上可见,无论是从产品还是市场来看,本项目设备较先进,其产品技术含量较高、企业利润率高、市场销售良好、盈利能力强,具有良好的社会效益及一定的抗风险能力,因而项目是可行的。本期项目是基于公开的产业信息、市场分析、技术
3、方案等信息,并依托行业分析模型而进行的模板化设计,其数据参数符合行业基本情况。本报告仅作为投资参考或作为学习参考模板用途。目录第一章 项目总论8一、 项目名称及投资人8二、 编制原则8三、 编制依据9四、 编制范围及内容10五、 项目建设背景10六、 结论分析12主要经济指标一览表14第二章 项目建设背景及必要性分析16一、 政策端明确可再生能源制氢发展方向16二、 可再生能源制氢是实现氢能产业低碳发展的基石17三、 新型电力系统构建释放可再生能源规模制氢潜力22四、 培育现代产业体系27第三章 市场分析31一、 电解水制氢的经济性及成本敏感性分析31二、 可再生能源电解水制氢有望进入平价区间
4、33第四章 项目选址方案35一、 项目选址原则35二、 建设区基本情况35三、 实施扩大内需战略,主动融入新发展格局39四、 强化创新核心地位,不断增创高质量发展新优势41五、 项目选址综合评价44第五章 产品规划方案45一、 建设规模及主要建设内容45二、 产品规划方案及生产纲领45产品规划方案一览表45第六章 SWOT分析说明48一、 优势分析(S)48二、 劣势分析(W)50三、 机会分析(O)50四、 威胁分析(T)51第七章 发展规划分析57一、 公司发展规划57二、 保障措施63第八章 法人治理65一、 股东权利及义务65二、 董事68三、 高级管理人员72四、 监事74第九章 原
5、辅材料成品管理76一、 项目建设期原辅材料供应情况76二、 项目运营期原辅材料供应及质量管理76第十章 安全生产78一、 编制依据78二、 防范措施80三、 预期效果评价86第十一章 组织机构、人力资源分析87一、 人力资源配置87劳动定员一览表87二、 员工技能培训87第十二章 项目节能说明90一、 项目节能概述90二、 能源消费种类和数量分析91能耗分析一览表91三、 项目节能措施92四、 节能综合评价92第十三章 投资计划94一、 投资估算的依据和说明94二、 建设投资估算95建设投资估算表97三、 建设期利息97建设期利息估算表97四、 流动资金98流动资金估算表99五、 总投资100
6、总投资及构成一览表100六、 资金筹措与投资计划101项目投资计划与资金筹措一览表101第十四章 经济效益评价103一、 经济评价财务测算103营业收入、税金及附加和增值税估算表103综合总成本费用估算表104固定资产折旧费估算表105无形资产和其他资产摊销估算表106利润及利润分配表107二、 项目盈利能力分析108项目投资现金流量表110三、 偿债能力分析111借款还本付息计划表112第十五章 风险评估114一、 项目风险分析114二、 项目风险对策116第十六章 总结说明118第十七章 附表附录120建设投资估算表120建设期利息估算表120固定资产投资估算表121流动资金估算表122总
7、投资及构成一览表123项目投资计划与资金筹措一览表124营业收入、税金及附加和增值税估算表125综合总成本费用估算表125固定资产折旧费估算表126无形资产和其他资产摊销估算表127利润及利润分配表127项目投资现金流量表128第一章 项目总论一、 项目名称及投资人(一)项目名称临沂氢项目(二)项目投资人xxx(集团)有限公司(三)建设地点本期项目选址位于xxx(以最终选址方案为准)。二、 编制原则1、项目建设必须遵循国家的各项政策、法规和法令,符合国家产业政策、投资方向及行业和地区的规划。2、采用的工艺技术要先进适用、操作运行稳定可靠、能耗低、三废排放少、产品质量好、安全卫生。3、以市场为导
8、向,以提高竞争力为出发点,产品无论在质量性能上,还是在价格上均应具有较强的竞争力。4、项目建设必须高度重视环境保护、工业卫生和安全生产。环保、消防、安全设施和劳动保护措施必须与主体装置同时设计,同时建设,同时投入使用。污染物的排放必须达到国家规定标准,并保证工厂安全运行和操作人员的健康。5、将节能减排与企业发展有机结合起来,正确处理企业发展与节能减排的关系,以企业发展提高节能减排水平,以节能减排促进企业更好更快发展。6、按照现代企业的管理理念和全新的建设模式进行规划建设,要统筹考虑未来的发展,为今后企业规模扩大留有一定的空间。7、以经济救益为中心,加强项目的市场调研。按照少投入、多产出、快速发
9、展的原则和项目设计模式改革要求,尽可能地节省项目建设投资。在稳定可靠的前提下,实事求是地优化各成本要素,最大限度地降低项目的目标成本,提高项目的经济效益,增强项目的市场竞争力。8、以科学、实事求是的态度,公正、客观的反映本项目建设的实际情况,工程投资坚持“求是、客观”的原则。三、 编制依据1、国家和地方关于促进产业结构调整的有关政策决定;2、建设项目经济评价方法与参数;3、投资项目可行性研究指南;4、项目建设地国民经济发展规划;5、其他相关资料。四、 编制范围及内容1、项目提出的背景及建设必要性;2、市场需求预测;3、建设规模及产品方案;4、建设地点与建设条性;5、工程技术方案;6、公用工程及
10、辅助设施方案;7、环境保护、安全防护及节能;8、企业组织机构及劳动定员;9、建设实施与工程进度安排;10、投资估算及资金筹措;11、经济评价。五、 项目建设背景现阶段PEM电解系统投资成本较高,未来降幅空间有望超过70%。对PEM电解制氢系统,电堆成本主要由双极板等核心部件的成本驱动,占电堆总成本的53%,主要因为PEM双极板通常需要使用Au或Pt等贵金属涂层达到抗腐蚀的目的,如使用Ti等低廉涂层替代贵金属,可实现双极板成本的大幅下降;稀有金属Ir是膜电极中阴极催化剂的重要组成部分,Ir在整个PEM电解系统中成本占比不到10%,但存在供需不平衡的问题。根据IRENA测算,对1MW碱性电解槽电堆
11、,现阶段投资成本为400美元/kW,2050年的目标价格将小于100美元/kW;对于10MW碱性电解水系统,现阶段的投资成本约为700-1400美元/kW,2050年的目标价格将小于200美元/kW。在区域发展中率先基本实现现代化,在主要领域进入全省第一方阵。综合实力进入第一方阵,经济实力、科研实力、城市竞争力大幅跃升,成为全省发展重要的新增长极;产业发展进入第一方阵,基本实现新型工业化、信息化、城镇化、农业现代化,率先形成现代产业体系;文化软实力进入第一方阵,文化成为城市发展的根和魂,文化产业成为经济发展新的动力源泉,市民素质和社会文明程度进一步提升;生态文明建设进入第一方阵,绿色生产生活方
12、式广泛形成,碳排放达峰后稳中有降,生态环境根本好转,人与自然和谐共生的目标基本实现;改革开放水平进入第一方阵,市场化法治化国际化营商环境全面塑成,参与国际经济合作和竞争新优势明显增强;城乡融合发展进入第一方阵,乡村振兴走在前列,城乡差距显著缩小,基本公共服务均等化水平大幅提升;社会治理水平进入第一方阵,基本实现治理体系和治理能力现代化,平安临沂、法治临沂达到更高水平;民生建设进入第一方阵,人民生活更加美好,人的全面发展、人民共同富裕取得更为明显的实质性进展,充分展示现代化建设丰硕成果。六、 结论分析(一)项目选址本期项目选址位于xxx(以最终选址方案为准),占地面积约36.00亩。(二)建设规
13、模与产品方案项目正常运营后,可形成年产xx立方米氢的生产能力。(三)项目实施进度本期项目建设期限规划12个月。(四)投资估算本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资16282.81万元,其中:建设投资13091.10万元,占项目总投资的80.40%;建设期利息138.76万元,占项目总投资的0.85%;流动资金3052.95万元,占项目总投资的18.75%。(五)资金筹措项目总投资16282.81万元,根据资金筹措方案,xxx(集团)有限公司计划自筹资金(资本金)10619.29万元。根据谨慎财务测算,本期工程项目申请银行借款总额5663.52万元。(六)
14、经济评价1、项目达产年预期营业收入(SP):28600.00万元。2、年综合总成本费用(TC):22159.74万元。3、项目达产年净利润(NP):4715.05万元。4、财务内部收益率(FIRR):23.32%。5、全部投资回收期(Pt):5.30年(含建设期12个月)。6、达产年盈亏平衡点(BEP):9742.32万元(产值)。(七)社会效益项目建设符合国家产业政策,具有前瞻性;项目产品技术及工艺成熟,达到大批量生产的条件,且项目产品性能优越,是推广型产品;项目产品采用了目前国内最先进的工艺技术方案;项目设施对环境的影响经评价分析是可行的;根据项目财务评价分析,经济效益好,在财务方面是充分
15、可行的。本项目实施后,可满足国内市场需求,增加国家及地方财政收入,带动产业升级发展,为社会提供更多的就业机会。另外,由于本项目环保治理手段完善,不会对周边环境产生不利影响。因此,本项目建设具有良好的社会效益。(八)主要经济技术指标主要经济指标一览表序号项目单位指标备注1占地面积24000.00约36.00亩1.1总建筑面积49555.251.2基底面积14160.001.3投资强度万元/亩355.362总投资万元16282.812.1建设投资万元13091.102.1.1工程费用万元11419.382.1.2其他费用万元1257.002.1.3预备费万元414.722.2建设期利息万元138.
16、762.3流动资金万元3052.953资金筹措万元16282.813.1自筹资金万元10619.293.2银行贷款万元5663.524营业收入万元28600.00正常运营年份5总成本费用万元22159.746利润总额万元6286.737净利润万元4715.058所得税万元1571.689增值税万元1279.4710税金及附加万元153.5311纳税总额万元3004.6812工业增加值万元10270.1713盈亏平衡点万元9742.32产值14回收期年5.3015内部收益率23.32%所得税后16财务净现值万元9151.52所得税后第二章 项目建设背景及必要性分析一、 政策端明确可再生能源制氢发
17、展方向氢能首次纳入国家能源战略,定位提上新高度。2022年以来,围绕氢能在可再生能源消纳、新型储能系统建设、交通运输及工业领域脱碳等方面的作用,国家相关部门密集出台了支持可再生能源制氢及其上下游产业链发展的政策及规划,将氢能产业纳入战略性新兴产业和重点发展方向。国家积极布局可再生能源PEM电解水制氢技术攻关。根据国家规划,工业副产氢及可再生能源制氢在中短期是氢能制取的两条主要技术路线,中长期来看,国家对制氢路线的布局重点围绕可再生能源电解水制氢及PEM电解槽技术攻关,风电、光伏有望成为可再生能源电解水制氢的两大主要电力来源。提高转化效率及单台制氢规模是可再生能源制氢装置发展的主要趋势,高弹性、
18、大功率PEM电解槽是未来可再生能源制氢装置技术攻关及应用推广的重点方向,但现阶段仍处于样机研制阶段。PEM电解水制氢有望成为“绿电+绿氢”生产模式的主流发展趋势。为匹配可再生能源制氢应用规模扩大对大规模储能的需要,国家对可再生能源离网制氢技术进行了研发规划。目前,我国离网条件下风电耦合制氢技术尚处于起步阶段,相对于并网制氢,离网制氢可有效提高电能利用效率、减少整流、并网等设备投资、避免入网审批、缩短建设周期的优点,但由于缺少大电网的稳定支撑,对于电解槽兼容可再生能源功率快速波动提出了更高的要求,这也进一步推动PEM电解水制氢成为“绿电+绿氢”生产模式的主流发展趋势。同步打通制氢能储输加用全产业
19、链发展堵点,支持氢能供给及时向下游传递。国家规划通过大规模管网铺设及掺氢天然气等方式进行绿氢的长距离运输,解决氢能产业长期发展存在的绿氢生产与需求错配问题,为提高绿氢在各应用领域渗透程度提前布局。合成氨、炼油、烧碱、焦化等化工行业,钢铁、水泥等高耗能行业以及交通运输行业作为氢能产业的重要消费端,通过与绿氢产业耦合释放氢能大规模需求潜力,叠加以可再生能源为主体的电力系统长周期、大容量储能与调峰对可再生能源制氢产业的电力输出,将成为未来可再生能源制氢发展的两大主要驱动力。二、 可再生能源制氢是实现氢能产业低碳发展的基石制氢处于氢能产业链的上游,是推动氢能产业发展的基石。氢能制取主要有三种较为成熟的
20、技术路线:(1)基于煤炭、天然气等化石燃料重整制氢;(2)以焦炉煤气、氯碱工业、丙烷脱氢、乙烷裂解为代表的工业副产气制氢;(3)基于新型清洁能源的可再生能源制氢,可再生能源制氢主要分为可再生能源电解水制氢、生物质制氢、太阳能光解水制氢三种,主要是采用电解水制氢。可再生能源制氢处于氢能产业链的上游,可再生能源发电的下游。可再生能源转化的多余电能通过变流器调压后进入电解水制氢装置,在电解槽中进行水电解制氢,制备的氢气经过提纯进入氢气储存系统。一部分气体通过燃料电池发电系统实现电网侧调峰;另一部分气体通过长管拖车、液氢槽车或者管网运输等方式进入用能终端或加氢站,氢气以满足交通运输、发电、化工生产及冶
21、金等行业下游氢能消费需求,解决可再生能源利用和氢能产业发展的区域协调。我国氢源结构清洁化程度低于国际水平。现阶段,我国氢源结构以煤为主,清洁度低于国际平均水平,与日本等发达国家存在较大差距。我国煤炭资源储量丰富,占全球煤炭资源的48%,决定了煤气化制氢在原料的可获得性和成本的经济性上具有很强的竞争力,2020年煤制氢量占62%,是我国最主要的氢气来源。受资源禀赋限制,天然气制氢是我国第二大氢气来源,占总制氢量的18%。天然气重整制氢技术较为成熟,是国外主流制氢方式,但我国天然气储量较少,仅占全球储量的6.63%,考虑我国能源“富煤,缺油,少气”的资源禀赋,仅少数地区,如四川等存在天然气资源过剩
22、的省份,具有发展天然气制氢的优势。可再生能源制氢是实现氢能低碳制取的有效途径。煤制氢会产生SO2,粉尘,废渣等废弃物排放,碳排放约22.66kgCO2/kgH2,化石能源低碳制氢需要配合CCS技术,可将煤制氢碳排放降至10.52kgCO2/kgH2。煤炭制氢成本约为6.77-12.14元/kgH2,CCS技术在有效降低煤炭制氢GHG排放量的同时,也使制氢成本增加约5元/kgH2。按照当前中国电力的平均碳排放强度核算,使用电网电力进行电解水制氢的碳排放约为30kgCO2/kgH2,其二氧化碳排放和成本均远高于使用化石能源直接制氢。可再生电力电解水制氢的单位碳排放量可降低至灰氢(化石能源重整制氢)
23、的5%-70%、蓝氢(工业副产氢、化石能源重整制氢+CCS)的10%-50%,因此电解水制氢需要配合可再生能源发电才能实现低碳发展的终极目标。电解水制氢是可再生能源制氢的主要方式。可再生能源电解水制氢是将弃风、弃光等可再生能源所发电力接入电解槽电解水,通过电能供给能量,使得电解槽内水分子在电极上发生电化学反应,分解成氢气和氧气,进行储存或运输。根据电解质的不同,电解水制氢技术可分为四类,分别是碱性(AWE)电解水制氢、质子交换膜(PEM)电解水制氢、固体聚合物阴离子交换膜(AEM)电解水制氢、固体氧化物(SOEC)电解水制氢。AWE电解水技术最为成熟,但与可再生能源适配性较差。AWE电解水制氢
24、具有技术安全可靠、制造成本低、操作简单、运行寿命长等优点。AWE电解槽中的隔膜为石棉或以聚苯硫醚(PPS)织物为基底的新型复合隔膜等材料,电极一般采用镍基材料,避免使用贵金属导致成本增加。AWE电解水制氢主要存在三点问题:(1)液体电解质和隔膜上的高欧姆损耗造成了AWE电解槽的电解效率较低,一般为60%75%,导致碱性电解水制氢的能耗较高;(2)由于传质的滞后性,以及经分离后的氢气需配合脱附剂以除去其中的水分和碱雾,不仅影响气体纯度,而且碱性电解槽无法快速启动及变载,与可再生能源发电的适配性较差;(3)在低负荷下阳极侧氧气产率较低,氢气分压上升可能导致氢氧混合危险,因此碱性电解槽工作负荷范围较
25、小,对可再生能源波动的调节范围较窄。为克服AWE电解制氢动态特性差、碱液腐蚀、串气安全等问题,阴离子交换膜电解技术采用具有良好气密性、低电阻性、成本较低的阴离子交换膜替代AWE中的隔膜,碱液中的OH-通过阴离子交换膜形成电解槽的电流回路,目前处于实验室研发阶段。我国AWE电解槽技术成熟,已在工业上实现量产。我国可生产出多种不同型号和不同规格的电解水制氢设备,单台最大产气量为1500m3/h,技术指标已达到国际先进水平,代表性单位包括中船重工第七一八研究所、苏州竞力制氢设备有限公司等。截至2020年,我国AWE装置的安装总量为2000套左右,多数用于电厂冷却用氢的制备。质子交换膜电解水制氢技术与
26、可再生能源发电匹配优势明显,是唯一能满足欧盟技术指标的可再生能源电解水制氢方式。质子交换膜电解水技术与碱性电解水制氢技术原理不同,区别在于PEM技术采用高分子聚合物阳离子交换膜代替了AWE技术中的隔膜和液态电解质,起到隔离气体和离子传导的双重作用。PEM技术的核心部件仍是电解槽,由PEM膜电极、双极板等部件组成。相比于AWE电解水制氢技术,PEM电解水制氢具有以下优点:1)安全性和产物纯度较高;2)PEM电解质膜厚度可小于200m,能量损耗低、传质效率高,提升了电解效率,电解槽的结构也更加紧凑;3)纯水作为PEM电解池的电解液,对槽体几乎无腐蚀,且电解反应产物不含碱雾;4)质子交换膜电解槽负荷
27、范围宽,对峰电调节更加灵活。根据“十四五”国家重点研发计划重点专项规划,PEM电解槽可适应的功率波动性将进一步扩展到5%-150%;启动时间相较于碱性电解水制氢技术快2倍以上,对可再生能源波动的响应更加迅速,更适用于平抑可再生能源并网的波动性。欧盟规定了电解槽制氢响应时间小于5s,目前只有PEM电解水技术可达到这一要求。固体氧化物电解水制氢距离规模化制氢应用尚需相关材料和催化剂技术进一步攻关,短期难以大规模投入实际应用。固体氧化物电解水是一种在高温状态下电解水蒸气制氢技术,该技术工作温度在6001000,主要结构包括阴极、阳极和电解质层。阴极通常使用Ni/YSZ多孔金属陶瓷,阳极为含稀土元素的
28、钙钛矿(ABO3)氧化物、电解质层为氧离子导体(YSZ或ScSZ等)。固体氧化物电解技术氢气转化率高,实验室电解制氢效率接近100%;操作灵活且规模可控;SOEC具有在电池和电解池模式间可逆运行的优势。然而,从整体能量使用率来看,SOEC技术的高温条件会造成热能的损失以及水资源的过量使用,同时增大了对电解池材料的要求,使得该技术目前只能在特定的高温场合下应用。全球电解槽装机呈现大功率、PEM化的发展趋势。目前,世界范围内投入运行的电解装置不断增多,多数电解水制氢项目位于欧洲,少数位于澳大利亚、中国和美洲。根据2018年的全球PowertoHydrogen制氢项目统计,项目平均容量由2000年0
29、.1MW增加到2019年的5MW,呈现大功率的发展趋势;随着质子交换膜技术的不断发展,PEM电解水制氢装机规模在新增装机中占比逐渐提升,成为主流的电解制氢发展技术路线。三、 新型电力系统构建释放可再生能源规模制氢潜力大规模制氢是大规模用氢的前提,我国氢能供给结构将从化石能源为主的非低碳氢向以可再生能源为主的低碳清洁氢过度。随着深度脱碳的需求增加和可再生能源电解水制氢经济性的提升,2040-2050年,可再生能源制氢在氢能供应中超过50%,我国的能源结构从传统化石能源为主转向以可再生能源为主的多元格局,可再生能源电解水制氢将成为有效供氢主体,煤制氢+CCS技术、生物制氢和太阳能光催化分解水制氢等
30、技术成为有效补充,预计2060年我国可再生氢产量提升至1亿吨,约占氢气年度总需求的77%。受规模限制及供给端清洁化转型需求,工业副产氢可支持中短期终端氢气消费量。我国工业副产氢主要来源包括轻烃利用(丙烷脱氢、乙烷裂解)、氯碱行业、焦炉煤气提纯、合成氨醇弛放气提纯。从我国工业副产氢的放空量现状来看,供应潜力可达到450万吨/年,能够支持约97万辆公客车全年运营,但存在地域分布性差异(PDH及乙烷裂解主要分布于华东及沿海地区、较大规模的氯碱厂主要分布在新疆、山东、内蒙古、上海、河北等省市,焦化厂主要分布在话内积华东地区,合成氨醇企业主要分布在山东、陕西和河南等省份)。在氢能产业发展初期,由于需求增
31、量有限,工业副产氢接近消费市场、经济性佳、提纯技术较为成熟,是氢能供应体系的重要补充。2060年,氢气总需求量将达到1.3亿吨,受工业副产氢的产业规模限制,产量提高潜力较小;同时,钢铁、化工等工业领域需要引入无碳制氢技术替代化石能源实现深度脱碳,将从氢气供给方转变为需求方。因此,随着氢能全产业链深度脱碳,工业副产氢的产量也将逐渐萎缩。电力结构清洁化趋势构筑可再生能源规模制氢的基石。“十三五”以来,煤电装机和发电量占比持续下降,太阳能及风力发电装机及发电量稳步增长。2021全国发电装机容量约23.8亿千瓦,同比+7.9%。其中,风电装机容量约3.3亿千瓦,同比+16.6%;光伏装机容量约3.1亿
32、千瓦,同比+20.9%。2021年,全国可再生能源发电量达2.48万亿kWh,占全社会用电量的29.8%。其中,风电6526亿kWh,同比增长40.5%;光伏发电3259亿kWh,同比增长25.1%。随着“十四五”电力规划的实施,到2025年,我国风电、太阳能发电总装机及发电量将达10.87亿kW、1.87万亿kWh,到2030年,我国风电、太阳能发电总装机容量将达12亿kW以上(全球能源互联网发展合作组织预估为18.25亿kW)。到2050年,清洁能源成为电源装机的增量主体,90%的电量将由水电、太阳能发电、风电、核电等清洁能源共同承担。2060年,在碳中和情境下,风电、太阳能发电总装机有望
33、达到63亿千瓦,2021-2060年风光装机量增长近十倍。可再生能源发电成为电力供应的主体,储能需求逐步凸显。随着风光等新能源大规模接入,平抑新能源出力波动,解决新能源消纳,提升能源利用效率等需求逐渐凸显,储能技术可以提升电力系统灵活性、经济性、安全性,在以新能源为主体的新型电力系统构建及改造过程中发挥重要作用。氢储能是大容量、长周期储能的唯一解决方案。各种储能方式在储能时间和储能时长上优势互补,目前应用较为广泛的电化学储能、抽水蓄能等技术只能解决电力系统的短期调节问题,且受成本等因素制约,月度调节和季度调节还存在很大障碍。氢储能的容量大、周期长,覆盖的储能周期及容量跨度广,在时间周期及储能容
34、量上具有调节的灵活性,针对电网削峰填谷、集中式可再生能源并网等应用场景需要氢储能作为大容量长周期储能技术参与可再生能源波动性调节。氢储能目前多采用碱性电解槽技术配合高压气态储氢技术以及质子交换膜燃料电池完成可再生能源储存及电-电转化,能量转化效率有待提升。通过改善碱性电堆、电极与隔膜材料,优化质子交换膜电解槽的设计和制造工艺提高可再生能源储能效率,通过提高储氢压力、开发氢气液化装备及储罐提升储氢效率,预计2025年可实现40-45%的电-电转化效率以及15-20mol/L的储氢密度。可再生能源装机的大规模发展,叠加大容量氢储能在可再生能源季节性调峰中的作用,使可再生能源规模制氢成为可能。202
35、0年,全国可再生能源发电量达22148亿kWh,如果按1%的比例进行电解水制氢,制氢效率按照5kWh/Nm3测算,可制取氢气约40万吨/年。根据全球能源互联网发展合作组织预计,2025年风电、太阳能发电总装机容量将达到5.36亿kW、5.59亿kW;2030年风电、太阳能发电总装机容量将达到8亿kW、10.5亿千瓦;2050年风电、太阳能发电总装机容量将达22亿kW、34.5亿kW;2060年风电、太阳能发电总装机容量将达25亿kW、38亿kW。按照可再生能源装机量1-15%配置电解水制氢装置,参与发电量5%-30%的季节性储能调峰比例接入电解水制氢系统,预计2025年、2030年、2050年
36、、2060年电解水制氢效率可达到5kWh/Nm3、4.5kWh/Nm3、4kWh/Nm3、4kWh/Nm3,可再生能源制氢量将达到40万吨、500万吨、6500万吨、1亿吨氢气,能够满足节能与新能源汽车技术路线图2.0及中国氢能联盟对我国氢气需求量的预计,支撑我国清洁氢供给结构需求。假设2025年、2030年、2050年、2060年的电解装置全功率运行时间分别为2000h、3000h、4500h、5000h,对应电解装置装机规模将达到0.12亿kW、0.84亿kW、6.49亿kW、8.99亿kW。氢储能已在国内外开放示范运行,国内在建项目占比较大。截止至2021年底,主要发达国家在运营氢储能设
37、施已有9座,电解槽装机量合计17.33MW。其中,最大的两处均在德国,电解槽装机量为6000kW;另有两处氢储能设施在建,电解槽装机量合计2.8MW。我国在建和示范运行的氢储能设施共有7座。其中,位于张家口在建的“张家口200MW/800MWh氢储能发电项目”是目前全球规模最大的氢储能项目,将安装80套5000kW电解槽,项目建设期为2年,预计2023年投入运行。四、 培育现代产业体系坚持产业立市,把发展着力点放在实体经济上,横向抓布局、纵向抓强链、外部抓赋能、内部抓内涵,持续推进“三个坚决”,加快发展新动能主导的现代产业体系,推动新旧动能转换取得突破、塑成优势。优化构建产业布局。坚持集群化、
38、园区化、高端化、智能化发展方向,探索形成合理的产业布局,初步构建“东钢、西木、南智、北食、中新兴”重点产业布局。“东钢”以莒南县、临沂临港经济开发区为主体,建设东部精品钢制造业基地。“西木”以兰山区义堂镇、费县探沂镇和平邑县卞桥镇为主体,建设高端木业产业集群。“南智”以兰陵县、郯城县和临沭县为主体,打造智能制造新中心。“北食”以沂水县、沂南县、蒙阴县和平邑县为主体,打造农业产业与生态融合发展带。“中新兴”以兰山区、河东区、罗庄区、临沂经济技术开发区、临沂高新技术产业开发区和综合保税区为主体,打造创新要素驱动核心功能区。坚决淘汰落后动能。用好生态环保、安全生产、节能减排“三个工具”,加严质量、技
39、术、用地等标准,倒逼落后产能退出,严肃查处国家严控行业的产能违法违规行为。持续推进淘汰类装备清理,依法依规处置去产能企业、“僵尸企业”资产,严控新增过剩产能。积极运用市场化、法治化手段,深化行业供给侧结构性改革,严格控制增量,调整优化存量。深入开展“亩产效益”评价,完善企业分类综合评价体系,制定要素配置差异化政策,持续整治“散乱污”企业。加快推动行业高质量发展,鼓励企业通过产能置换、指标交易、股权合作等方式兼并重组,引导产业转型升级、优化搬迁和梯度转移,提升产业基础能力和产业链现代化水平。坚决改造提升传统动能。坚持链条化、集群化发展方向,按照“龙头带动、中等抱团、小微众创”思路,以木业转型为突
40、破,带动其他传统产业加快转型升级。“十四五”末,木业规模以上企业产值超过1000亿元,巩固扩大“中国板材之都”品牌优势;食品产业规模以上企业产值超过1500亿元,打造全国闻名的绿色食品产业基地;精品钢制造产业规模以上企业产值超过1500亿元,重点打造世界一流、国内领先、绿色高端的精品钢产业集群;机械电子产业规模以上企业产值超过1000亿元,打造国内外知名的机械智能制造名城;高端化工产业规模以上企业产值超过800亿元,重点发展绿色化工、精细化工;医药产业规模以上企业产值超过500亿元,建设国家级生物医药战略性新兴产业集群;建材产业规模以上企业产值超过450亿元,向绿色高端建材转型;纺织产业规模以
41、上企业产值超过200亿元,打造国内首家中国设计师品牌服装产业基地;建筑业产值超过2000亿元,打造全国知名的现代化建筑业强市。滚动实施“千项技改”“千企转型”,提升传统产业现代化水平。坚决培育壮大新动能。坚持园区支撑、链式整合、集群带动、协同发展,力争战略性新兴产业产值占比达到30%以上。加快发展新一代信息技术产业,重点支持中印软件园、龙湖软件园、郯城电子科技园、综合保税区电子信息园、沂蒙云谷等建设,形成具有较强竞争力的电子制造业产业集群,打造数字强市。加快发展新材料、新工艺产业,延伸高端金属材料产业链,积极发展磁性材料、新型无机非金属材料以及连续流制造新工艺,打造全省重要的新材料、新工艺创新
42、基地。加快发展新能源产业,重点建设氢能源物流、新能源创新产业园和沂蒙氢能示范小镇和路运港智慧氢能物流产业园等项目,打造全国知名的氢能产业基地。超前布局生命健康、机器人等未来产业,大力发展医学教育、医学科研,积极培育平台经济、共享经济、体验经济、创意经济。加快发展数字经济,推动数字产业化,深化数字经济园区建设,做大做强大数据、云计算、物联网等核心引领产业。推动产业数字化,加快制造业向数字化、网络化、智能化转型,创新发展智慧农业,提升商贸物流等服务业数字化水平。第三章 市场分析一、 电解水制氢的经济性及成本敏感性分析现阶段大部分地区电解水制氢尚不具备经济性,AWE制氢成本优势明显。目前AWE电解槽
43、和PEM电解槽已经工业化,而AEM电解水以及SOEC电解槽尚处于实验室阶段,还未商业化,主要针对前AWE、PEM制氢进行成本分析。制氢成本分为固定成本和可变成本,固定成本包括设备折旧、人工、运维等,可变成本包括制氢过程的电耗和水耗。在现有条件及假设下,AWE、PEM电解水制氢成本分别为22.88元/kgH2、28.01元/kgH2,由于较高的电耗成本及折旧成本,使电解水制氢成本远超过煤制氢(含CCS)、天然气重整制氢(含CCS)以及工业副产氢,超过煤制氢成本1倍左右,在成本上暂无竞争力。电耗成本是现阶段电解水制氢降本的关键因素之一。电耗成本在电解水制氢成本中占比最高,AWE、PEM电解水分别约
44、为85.93%、63.18%,其次为折旧成本,AWE、PEM电解水分别约为9.77%、26.07%,这两项成本占比均达到总成本的90%。由于人工运维和原料属于刚性支出,降本路径主要依赖电解槽电解效率提高和可再生能源制氢电力成本下降带来的电耗成本降低、电解槽成本下降带来的折旧减少、单台制氢产量增加带来的固定成本均摊下降。随着可再生能源发电成本的降低,在其他成本不变的前提下,AWE电解水制氢有望具备一定的经济性。根据中国十四五电力发展规划,2025年光伏发电成本将降至0.3元/kWh左右,2035年、2050年将降至0.13元/kWh、0.1元/kWh。对于AWE制氢,在电耗成本的降低主要依赖电价
45、的下降。随着电价的降低,AWE电解制氢成本和电力成本占比也同步降低。按照光伏电价规划,2025年光伏制氢成本为20.07元/kg,电耗成本降低至20.1%,2035年、2050年光伏制氢成本将达到10.52元/kg、8.83元/kg,相对于天然气制氢及煤制氢相比已经具备了一定的竞争优势。现阶段,对于部分可再生能源发电成本较低的地区,AWE制氢已存在一定的经济性。可再生能源储能需求增加可带来电解槽运营时间增加,在与电价降低的协同作用下,AWE电解水制氢有望具备一定的经济性。随着氢能行业的发展,当氢气需求达到一定水平,并且可再生能源电力储能取得突破,可以通过延长电解槽工作时间以摊薄其固定成本。在不
46、同电价条件下,随着电解槽工作时间的延长,由于单位氢气固定成本的降低,制氢成本随之下降,但成本下降空间随工作时间延长逐渐趋缓。2025年,当电价为0.3元/kWh,在现有固定成本下AWE制氢成本约1820元/kgH2,无法实现与煤制氢+CCS平价;当电价下降到0.2元/kWh,制氢成本开始下降至与煤制氢+CCS成本相当或具有一定竞争优势;2035年之后,当电价成本降至0.13元/kWh以下时,制氢成本将与煤制氢+CCS成本相比具有较大竞争优势。二、 可再生能源电解水制氢有望进入平价区间电堆是电解水制氢系统的核心,成本占比最高。电解水制氢系统由电解电堆及辅助系统组成。电堆是电解反应发生的主要场所,
47、是电解水制氢系统的核心部分,在电解系统成本中占45%;辅助系统包括电气系统、去离子水循环系统、氢气处理及纯化系统、气体冷却系统,在电解系统成本中占55%。现阶段国内AWE电解系统成本价格接近目标价格。对AWE电解系统,电堆成本主要由电极、膜片等核心部件的成本驱动,占电堆成本的57%;碱性电解槽的双极板材料使用镀镍钢,材料便宜,设计及加工简单,占电堆成本的7%。根据中石化“库车绿电示范项目”招标价格,2022年我国碱性电解系统价格已降至1500元/kW。根据IRENA测算,2050年的1MW碱性电解槽电堆投资成本目标价格将小于100美元/kW;10MW碱性电解水系统的目标价格将小于200美元/kW。根据隆基氢能测算,2030、2050年,国内AWE电解槽成本将降至7