2022年初三数学基础训练题.docx

上传人:C****o 文档编号:59153695 上传时间:2022-11-09 格式:DOCX 页数:22 大小:366KB
返回 下载 相关 举报
2022年初三数学基础训练题.docx_第1页
第1页 / 共22页
2022年初三数学基础训练题.docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年初三数学基础训练题.docx》由会员分享,可在线阅读,更多相关《2022年初三数学基础训练题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(一)1 11. 运算:18 2 3 1 0 12 1 22. 16 的平方根是23. 分式 x 1 的值为零,就 xx 14. 等腰三角形的两边是 6cm和 9cm,就周长是5. 如直角三角形的斜边长 10,那么它的重心与外心之间的距离是6. 函数 y 2 x 1的定义域是,如 f x 3 x 1就 f 4 x 1 x 17. 相切两圆的圆心距是 5cm,其中一个圆的半径是 3cm,就另一圆的半径是8. 在一陡坡上前进 40 米,水平高度上升 9 米,就坡度 i9. 把抛物线 y x 2 3 向右平移 2 个单位后,所

2、得抛物线顶点是10. 设 m、 n 是方程 x 2 2 x 1 0 的两个根,那么 1 1m n11. 方程 6 x 2 12 5 x 1 38 设 x 1y 原方程可变形关于 y 的整式方程是x x x12. 如图弓形 ACB 所在圆的半径是 5, C 弦 AB=8,就弓形的高 CD是A D B 13. 如正多边形的中心角是0 36 ,就这个正多边形的边数是使得四边形ABCD是菱形;14. 分式方程x2111x0的根是x15. 分解因式x212axa216. 数据 5, -3 ,0,4,2 的中位数是方差是17. 不等式组2x53 x2的解集是18. 已知四边形x 1x2 3ABCD中, A

3、B/CD,AB=BC请填上一个适当的条件19. 已知一次函数ykxb过点1,1与2 ,4,就 y 的值随 x 的增大而20. 两个相像三角形的周长之比是19,就它们的面积之比是21. 上海市现有人口约一千七百万,用科学记数法表示是名师归纳总结 0 22. 在边长为 2 的菱形 ABCD中,B 45 AE 为 BC边上的高, 将 ABE沿 AE所在直线翻折后得那么 ABE 与四边形 AECD重叠部分的面积是ABE,23. 已知x22x2代简求值 24.解方程:xx6xx610第 1 页,共 14 页3x12x3x3x3x1- - - - - - -精选学习资料 - - - - - - - - -

4、 学习必备 欢迎下载练习题(二)1. 运算:2210121311Sin 600= b,反比例函数是另222. 分解因式:x2y2xy3. 函数 y 2x4. 中国土地面积x1 的定义域是29600000 平方千米,用科学记数法可表示为5. 不等式2x13x3的解集是3x14x6. 如点Aa,1 b2与点B4 ,2关于原点对称,就a7. 已知函数fx2x1,那么f3= x18. 将抛物线y2x23向右平移 2 个单位后,所得抛物线的顶点坐标是9. 解方程32x3x的解是10. 如正、反比例函数的图象都经过点(2,4),就正比例函数是一交点是(,)15,乙所得环数如下:0,1,2 11. 如方程

5、x 1 2 3x x 12. 等边三角形的边长是x2 2 0,设 y x1 x 3cm,这个三角形的面积是1就原方程可化为13. 甲、乙两人竞赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为5, 9,10,那么成果较为稳固的是14. 在等腰ABC中,C090 BC 2 cm,假如以 AC的中点 O为旋转中心,将这个三角形旋转B 与点 B的原先位置相距 cm180 0,点 B 落在点 B 处,那么点15. 在坡度为 13 的坡上种树,要求株距为53 m(水面距离) ,那么两树间的坡面距离是16. 已知圆O ,圆O 外切,半径分别为1cm和 3cm,那么半径为5cm,且与圆O ,圆O 都相切的

6、圆一共可作个17. 已知圆 O的弦 AB=8,相应的弦心距18. 解方程组4x2y20OC=3,那么圆 O的半径长等于2x xy 4 019. 在 ABC中,点 D、E 分别在边 AB、AC上, CD平分 ACB,DE/BC,假如 AC=10,AE=4就 BC= 20. 假如 1x 、x 是方程 x 23 x 1 0 的两个根,那么代数式 x 1 1 x 2 1 的值是21. 某工厂方案在两年内产量增长 44%,就每年平均增长率是22. 已知 AD是 ABC的角平分线, E、F 分别是边 AB、AC的中点,连结DE、DF,在不再连结其他线段的前名师归纳总结 提下,要使四边形AEDF成为菱形,仍

7、需要添加一个条件,就这个条件是12xx2x10第 2 页,共 14 页23. 运算:x244x22x12 24.解方程22x1x24 x2- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(三)1.a 、 b 是互为负倒数,就 a.b= 2. 因式分解 2 x 2 2 x 13. y x 3的自变量的取值范畴x 24. f x 1,就 f 65. 已知反比例函数过点(-1 , 2),就反比例函数解析式为6. y x 2 4 x 1 的图象向左平移 2 个单位,再向上平移 3 个单位所得图象的解析式是2 27. 解方程:x 32 3 x 13,设

8、 y x 3换元整理得整式方程为x x 3 2 x8. 不等式组 2 4 的解集是3 1 x 0 29. 点( -2 ,3)关于 y 轴对称的点的坐标是10. 半径为 6 的圆的内接正六边形的边长是11. 假如分式xx2x46的值为零,那么xi12 212. 分式方程12x 1 0 的根是x 1 1 x关于 x 轴对称的直线解析式是13.yx14.1x 、x 、x 的平均数为3,就1x1、x22、x33的平均数为15. 如图坡比 i12 如 BC=5 就 AB= C 16. 已知圆 O的弦 AB=8,半径r5,求弦心距 B A 17. 已知1r4、2r7,d5就两圆的关系是18. 已知一元二次

9、方程,x23x10的两根为1x 、x ,就11x 1x219. 如图ADE ABC所需添加的一个条件是 A E D B C 20.1350000 记作科学记数法名师归纳总结 - - - - - - -第 3 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(四)1. 2 22 22. 因式分解:x 3 xy 2 y3. y 6 x自变量的取值范畴是x 14. y x 2 2 x 1 的最大值是5. 一次函数的截距为-2 ,且过( 2,-1 ),就一次函数解析式为26. y 2 x 1 3 的顶点坐标是7. 2 x x 的解是8. 不等式组 2x 40

10、的解集是1 x 12 39. 点( m,3),(2,n)关于原点对称,就 m= n= 10. 半径为 6 的圆的内接正方形边长为11. 要使分式x2x6的值为零, x 的值是y,就所得方程为x2x212. 方程x2x12x2x40用换元法解题,设13.yx2关于 y 轴对称的直线解析式是14. 样本 -1 ,3,2,6,7 的中位数是15.ctg600sin600 A 1, E AGE16. 如图ABC中线 AD、BE相关于 G,S就SBDG G B D C 17. 如图圆O ,圆O 相关于 A、B 两点,2 A O AO A,半径1r6,2r8,求圆心距O 1O = O 1O18.x26x2

11、0的根是1x ,x ,就x2x 1x 1x219. 用科学计数法表示:0.00602= 20. 如图,依据图示,要使ACD ABC,仍应补充哪一个条件:(1)式( 2)式(3)D C B 名师归纳总结 - - - - - - -第 4 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(五)1. 运算:tan20123210181y 轴上截距是米;260200622. 用科学记数法表示 3. 如 xy0 且 xy-0.0002003= 0,就点 A( x , y )在第象限4. 因式分解:ac bc a 2b 2= 5. 数据 1,3,3, x ,2 的

12、平均数是2,这组数据的方差是6. 如方程x25x24x24140,设yx25x就原方程可化为y 的整式方程是x1x25xx17. ABC的三边分别是8,15,17,此三角形内切圆的半径长是8. 已知: D为 ABC的 BC边上的中点, G是重心,S GBD15.cm2就SABC9. 正三角形的边长是a,就此三角形的面积是10. 一次函数图象平行于直线y3x,且交y4的图象于点( 2,m),该一次函数在x11. 不等式组2x x3 182 x的最小整数解是12. 在2 ,0,2,22 ,70 .7 14,9 ,3 . 14, 8360 中无理数是13. 函数y3x213的定义域是fx3x就f2x

13、x2114. 正五边形围着它的中心最少旋转度后与它本身重合;15. 方程x2x的解是16. 正六边形的边长是10cm,这个正六边形的边心距是17. 在坡度为 13 的斜坡上搬运一物体,如物体上升了10 米,就物体经过的路是18. 已知在ABC中,点 D、E 分别在 AB、AC边上,且 DE/BC,AD2,BC=15cm,AB5就 DE= cm 19. 对角线四边形是矩形20. 方程3 x22x40的两根是x ,2x 就x2x121. 把抛物线y2x2沿x轴向左移 1 个单位,再沿y 轴向下平移2 个单位,所得抛物线是名师归纳总结 22. 在直角坐标平面内有一点A(3,2)把点 A绕原点按顺时针

14、方向旋转x2900后,得到点A 坐标是第 5 页,共 14 页23. 运算a2a211a2a(其中a2) 24.解方程组4y202 aa1x2xy2y20- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(六)1. 运算:a 4a 22. 不等式组 x -3 的解集是x 1 23. 运算:3 24. 函数 y 2 中自变量 x 的取值范畴是x 25. 如正比例函数 y kx 经过点( 2,1),就这个函数关系式是6. 点 A 坐标为( -3 ,4)点 O为坐标原点,就线段 AO= 7. 某公司 2003 的营业额为 80 万元, 2005 年营

15、业额为 180 万元,其每年平均增长率为8. 当 a 2 时,化简 x 29. 因式分解:x 3 4 x10. 方程 2 x x 的解是11. 假如一次函数 y k 2 x 1 的图象不经过第三象限,那么 k 的取值范畴是12.A (2,-3 )其关于 x 轴的对称点 A的坐标是()13. 如梯形的上底长为 4,中位线长为 6,就此梯形的下底长为14. 半径分别为 3 和 5 的两圆内切,就这两圆的圆心距等于15. 如图 DE/BC, AD=5 BD=20 DE=3 , A 就 BC= D E B C 16. 已知:在直角三角形ABC中,C900 BC=2 cos A2,那么 AB= 317.

16、 直角三角形的重心到直角顶点的距离为2,就该直角形的斜边长为18. 如图, DE/BC,ADBD=12, A 那么SADESABC的值为 D E B C 19. 在坡度为i12.4 的斜坡上每走13 米就上升米;x11度;20. 假如等腰三角形底边上的高等于腰长的一半,那么该等腰三角形的顶角为21. 解方程:xx222xx60 22.解方程:x练习题(七)名师归纳总结 - - - - - - -第 6 页,共 14 页精选学习资料 - - - - - - - - - 1. 运算:x2x学习必备欢迎下载2.9 的平方根是y3 x平行,那么这个一次函数的解析3. 分解因式:x22x84. 已知x4

17、是方程2x41xa的根,那么 a45. 函数yx2的定义域是6. 已知一次函数ykxb的图象经过点A(0,-2 ),并与直线式是7. 假如将二次函数 y 2x 2的图象向右平移 3 个单位,那么所得函数的解析式是8. x 、2x 是方程 x 23 x 1 0 的两个实数根,那么 x 1 x 23 29. x x10. 用科学记数法表示:380000= 11. 函数 y 2x 5 图象与 y 轴交点的坐标是12. 二次函数 y x 2 2 x 1 的顶点坐标是13. 如图: DE/BC,假如 AD 2, A AB 5DE=4cm,那么 BC= cm D E B C 14. 已知: AB是圆 O的

18、弦, OCAB,垂足为点 距 OC= cm C,假如 OA=5cm, AB=8cm,那么弦心15. 在 ABC中, AB=AC=9cm,sin B 1,那么ABC的周长等于 cm(保留根号)216. 如图已知:BAD C AB=4 BD=2 , A 就 DC= 117. 假如斜坡坡度 i,坡角为,就 cos B D C 518. 半径为 6 和 2 的两圆圆心距为 8,就两圆共有 条公切线;19. 线段 AB长为 10 cm,C是黄金分割点,ACBC,就 AC= 20. 已知平行四边形 ABCD的周长为 8cm, ABC的周长为 7cm,就 AC的长为 cm 21. 运算:2 2 a 1 1

19、22. 解方程:1 x 32 5a a 2 a 2 x 3 x 2 x x 6练习题(八)名师归纳总结 - - - - - - -第 7 页,共 14 页精选学习资料 - - - - - - - - - 1. 分解因式:a29学习必备欢迎下载2. 方程x21x11的根是x3. 用科学记数法表示:-0.0000302= 4. 不等式组3x20 的解集是5. 方程组x2yx0 5的解是xy 66. 已知函数 f x 3 x,那么 f 1 = 7. 函数 y 2的定义域是x 38. 正比例函数 y 3 x 中, y 随着 x 的增大而9. 一次函数 y 1 x 1 的图象与 x 轴、 y 轴分别相交

20、于 A、B,那么 AB= 210. 一名射击运动员连续射靶,2 次命中 8 环, 5 次命中 9 环, 2 次命中 10 环, 1 次命中 7 环,那么这名运动员射击环数的平均数是11.9 的平方根是12. 一组数据 9、2、7、5、3 的中位数是13. 方程x24x3m0有两个相等的实数根,那么m= 14. 二次函数yx123的顶点坐标是 A 15. 如图, G是 ABC的重心, E是 BC上一点,假如 GE/AC,就 GE:AC= G 16. 正六边形是轴对称图形,它有条对称轴; B F E C 名师归纳总结 17. 在 ABC中,A900,设B,AC=b,就 AB= (用 b 和的三角比

21、表示)第 8 页,共 14 页18. 直角三角形的两条边长分别为6 和 8,那么这个三角形的外接园半径等于19. 两个圆的半径分别等于6 和 4,圆心距等于8,那么这两个圆的位置关系是20. 三角形三边中点连线组成的三角形周长为12,就原三角形的周长为21. 运算:27112221271 22.运算:cossin30023450tan6009264300sin- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(九)1. 假如 m与 2 互为倒数,那么 m=_ 2. 2 的倒数的相反数是 _ 33. 如 x 2 +mx+9是一个完全平方式,就 m

22、=_ 4. x 2 x 1 分解因式是 _ 5. 函数 y= 3 x 的定义域是 _ x 26. 6 x = x 的解是 _ 7. 如关于 x 的方程 a x = a 1 的一个根是 7,那么 a=_;28. 当 x_时,分式 x 9 的值为零;x 39. x 12 +x 2 44 =1 的解是 _;10. 假如 2 1 是关于 x 的方程 x 2 +mx 1=0 的一个解,那么 m=_;11. 已知方程 x 2 +x 6=0 的两个根是 x 1、x 2 ,就 x 1 +x 2 =_;12. 不等式组 x 20 1 x 2 的解是 _;313. 假如斜坡坡度 i= 1 ,坡角为,cos =_;

23、614. 关于 x 的一元二次方程 mx 2 3m 1x+2m 1=0,其根的判别式值为1,就 m=_;15. 点 A2,t 是双曲线 y=4 与直线 y=kx+6 的一个交点,求这条直线的解析式 _;x16. 运算: 2sin30 1 1 tg60 + 2 =_;2 3 117. 直线 y=kx+b 可以看成是将直线 y=kx 沿 y 轴向上平移 4 个单位得到的,就 b=_;18. 某工厂 2004 年的年产值为 2500 万元, 2005 年的年产值达到 3000 万元,就这个工厂的产值平均增长率为_;19. 等腰梯形的周长为80cm,中位线与腰长相等,那么它的中位线长等于_cm;20

24、在 ABC中, CDAB,假如 CB=20cm,CD=12cm,CA=15cm,那么 AB=_cm;21. 已知一个直角三角形的外接圆的直径为 22. 已知两圆的圆心距为 3,假如它们的半径 _;6cm,那么这个直角三角形斜边上中线长为 _cm;R、r 分别是 x 2 7x+10=0 的两个根,判定(两)圆位置是名师归纳总结 23. 用换元法解方程:xx1 6x1 1=0 24.运算:2cos60tan30 tan60 第 9 页,共 14 页xcos30sin30- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(十)1. 如 x2 时,化简

25、 x 2 =_ 2. 把 3x 2 27 分解因式是 _ 3. 如分式 x 1 x 4 的值为零,就 x_ x 1 4. 方程 3x+1=10 的根是 _ 5. 如正比例函数图象经过点(2,3),就这个函数的解析式是 _;6. 抛物线 y=3(x 2)2 的顶点坐标是 _,开口方向是 _;7. 函数 y= 3 x + 1 的 x 的自变量取值范畴是 _;x 1x 58. 已知函数 fx=,那么 f9=_;x 3x 19. 如分式 的值为零,就 x_;x 110. 假如关于 x 的方程 x 2 mx 3=0 的一个根为1,那么 x=_;11. 一元二次方程 x 2 5x+2=0 的两个根的倒数之

26、和等于 _;12. 运算:1 +(2)2 1 (2 1)1 =_ 2 1 4213. 运算:a2 b =_ a b a ba14. 3x+y=4 x y=8 的方程组解是 _ 名师归纳总结 - - - - - - -15. 假如一次函数y=2x+m不经过其次象限,求m的取值范畴 _;16. 已知ABC中, ACB=90 , B=30 , AB=2,那么 AC=_ 17. 梯形的两底之比为3:4 ,中位线长为21cm,那么较长的一条底边长等于_;18. 如两个相像三角形面积比为3:4 ,就两个相像三角形对应的周长比是_;19. 假如在ABC中, AD是中线, G是重心,那么AG:AD的值是 _;

27、20. 某一个小山地,斜坡的坡角为30 ,斜坡长80 米,那么小山地的高度是_;21. 已知 O中的弦 AB长为 16, O的半径长为10,那么圆心O到弦 AB的距离为 _;22. O的半径为 2,点 P是 O外一点,OP长为 3,那么以 P 为圆心且与 O相切的圆的半径是_ ;23. 解方程组3212 24.运算:(1 )30 (3 )1 2 12 2 (3 1)1xy531xy第 10 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(十一)1. 运算: 6x 2 y 3 2x 3 y 3 =_ _ 2. 因式分解: x 2 +x y y 2 =_

28、 _ 3. 求定义域: y= 1 _ _ x 14. 如 f (x) = 1 就 f (2)=_ x 1 x5. 假如 x= 1 是一元二次方程 x 2 +mx+1=0的一个根,就6. 用科学记数法表示:0.00002=_ m的值是 _;7. 点 M( 2,1)关于 y 轴的对称点 N的坐标为 _,8. 不等式 3x 9 的解是 _ x+20 2x 49. 如分式 的值等于零,就 x=_ x 210. 点 P( 2, 3)到 x 轴的距离是 _ 11. 二次函数 y=x 2 2x+2 的顶点坐标为 _ 12. 在方程 3x 2 x+ 2 2 =1 中,设 y=3x 2 x,就原方程可以化为整式

29、方程是 _;3 x x13. 假如一个样本数据为 8、5、6、4、7,就样本方差是 _;14. 如三角形三边中点的连线组成的三角形周长为 12,就原三角形的周长是 _ ;15. 已知、是一元二次方程 2x 2 +4x 1=0 的两个实数根,那么 + + =_ 16. 直角三角形斜边长为 6,那么这个三角形的重心到斜边中点的距离是 _ 17. 已知等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形底角是_度;118. 运算: 2cos60 (8 ) 3 +()0=_ 2719. 已知,关于 x 的一元二次方程 x 2 4x+m=0,假如方程有两个实数根,m的取值范畴是 _;20. 如梯形的上

30、底长为 1cm,中位线长为 2cm,就梯形的下底长为 _;21. ABC中, DE BC交 AB于 D,交 AC于 E,假如 AD:BD=1:2,就 S ADE :S ABC =_ 名师归纳总结 22. 已知 AB=9, A的半径为 7,假如 A 与 B有且只有一个公共点,那么B 的半径是 _ 第 11 页,共 14 页23.5x4x3=1 24.解方程组 y+2x=1 x2 2xy x=2 - - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(十二)1. 运算:( 3a3 )2 =_ 2. 运算:(x y)(x+y 1)=_ 3. 因式分解:

31、x 3 4x=_ 24. 当 x=_时,分式 x 1 有意义;x 115. 求值: 273=_ 52)=_ 6. 运算:(52) (7. 不等式 4x 3 x 2 的解集是 _ 8. 假如函数 fx= ax 5,f2=3 ,那么 a=_;9. 一次函数图象的截距为3;且平行于直线 y=4x,就这个一次函数的解析式是 _;10. 函数 y=2x 2 3 的顶点坐标是 _;11. 数据 1、 2、3、4、5 的方差是 _ 12. 运算: tan60 +cos45 =_ 13. 对角线 _的四边形是平行四边形;14. 假如菱形的两条对角线长分别是 6 和 8,那么菱形的高为 _;15. ABC中,

32、A=B C,那么三边 a、b、c 之间的等量关系是 _;16. 两个相像三角形的面积比是 1:3 ,那么它们的相像比是 _;17. ABC中, D在 AB边上, ACD=B,如 AC=6,AD=4,就 BD=_;名师归纳总结 18. 假如两圆的半径分别为3 和 5,圆心距为7,就两圆的位置关系是_;处,19. 边长为 3、4、 5 的三角形的内切圆半径是_;20. 在 Rt ABC中, A=90 , AB=AC=1,将ABC围着点 B 旋转使点 A 落在 BC边上,点 C落在点 C那么 AC的长度是 _;21. 运算:4x2xx1 ( 1+211) 22.解方程:(x22x)2 +x24x 3

33、=0 4x第 12 页,共 14 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载练习题(十三)1. 用科学记数法表示:0.000314=_ 2. 因式分解: a 2 b 2 a b=_ x 23. 当 x=_时,分式 的值为零;x 24. 已知 x 1 、x 2 是方程 2x 2 5x+4=0 的两根,就 x 1x 2 x 1 x 2 =_ 5. 当 x=_时,代数式 3x 2 4x 与代数式3x 2 +3x 2 的值相等;6. 如点 A(2,y)与点 B(x,3)关于 x 轴对称,就 xy=_;7. 函数 y= 1 中自变量 x 的取值范畴是 _ 3 2 x8. 某班有 30 名同学,其中身高 1.5 米有 20 人,身高 1.6 米有 5 人,身高 1.4 米有 5 人,就这个班平均身高为 _米;9. 解方程: 1x 11 = x 2 21 的根是 _;10. 直线 y=2x 4 与两坐标轴围成的三角形面积等于_

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁