第四讲-立体几何题型归类总结(共13页).doc

上传人:飞****2 文档编号:5915030 上传时间:2022-01-22 格式:DOC 页数:13 大小:1.71MB
返回 下载 相关 举报
第四讲-立体几何题型归类总结(共13页).doc_第1页
第1页 / 共13页
第四讲-立体几何题型归类总结(共13页).doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《第四讲-立体几何题型归类总结(共13页).doc》由会员分享,可在线阅读,更多相关《第四讲-立体几何题型归类总结(共13页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第四讲 立体几何题型归类总结一、考点分析基本图形1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体2. 棱锥棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。3球球的性质:球心与截面圆心的连线垂直于截面;(其中,球心到截面的距离为d、球

2、的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.球面积、体积公式:(其中R为球的半径)平行垂直基础知识网络平行关系平面几何知识线线平行线面平行面面平行垂直关系平面几何知识线线垂直线面垂直面面垂直判定性质判定推论性质判定判定性质判定面面垂直定义1.2.3.4.5.平行与垂直关系可互相转化异面直线所成的角,线面角,二面角的求法1求异面直线所成的角:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证

3、明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行;三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。3求二面角的平面角解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。二、典型例题考点一:三视

4、图2 2 侧(左)视图 2 2 2 正(主)视图 1一空间几何体的三视图如图1所示,则该几何体的体积为_.俯视图 第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是_.第2题 第3题3一个几何体的三视图如图3所示,则这个几何体的体积为 .4若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是 .3正视图俯视图112左视图a 第4题 第5题5如图5是一个几何体的三视图,若它的体积是,则 .6已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 .2020正视图20侧视图101020俯视图 7.若某几何体的三视图(单位:)如图所示,则此几何体

5、的体积是 8.设某几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为_m3。 俯视图正(主)视图侧(左)视图2322第7题 第8题9一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_.俯视图正视图 图1011. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_. 图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正

6、三角形,俯视图是一个圆,那么几何体的侧面积为_. 13.已知某几何体的俯视图是如图13所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其表面积是_.14.如果一个几何体的三视图如图14所示(单位长度: ), 则此几何体的表面积是_.图1415一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:)_. 正视图 左视图 俯视图图1516图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_.俯视图正(主)视图侧(左)视图2322图16 图1717.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为

7、_.18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为_.图18考点二 体积、表面积、距离、角注:1-6体积表面积 7-11 异面直线所成角 12-15线面角1. 将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了_.2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为_.3设正六棱锥的底面边长为1,侧棱长为,那么它的体积为_.4正棱锥的高和底面边长都缩小原来的,则它的体积是原来的_.5已知圆锥的母线长为8,底面周长为6,则它的体积是 .6.平行六面体的体积为30,则四面体的体积等于 .

8、7如图7,在正方体中,分别是,中点,求异面直线与所成角的角_.8. 如图8所示,已知正四棱锥SABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为_. 第8题 第7题9.正方体中,异面直线和所成的角的度数是_. 10如图9-1-3,在长方体中,已知,则异面直线与所成的角是_,异面直线与所成的角的度数是_ 图13 11. 如图9-1-4,在空间四边形中, ,分别是AB、CD的中点,则 与所成角的大小为_.12. 正方体中,与平面所成的角为 .13如图13在正三棱柱中,则直线与平面所成角的正弦值为_.14. 如图9-3-6,在正方体ABCDA1B1C1D1中,对角线BD

9、1与平面ABCD所成的角的正切值为_.A1CBAB1C1D1DO 图9-3-6 图9-3-1 图715如图9-3-1,已知为等腰直角三角形,为空间一点,且,的中点为,则与平面所成的角为 16如图7,正方体ABCDA1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面AB C1D1的距离为_.17.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是_.18长方体的8个顶点在同一个球面上,且AB=2,AD=, ,则顶点A、B间的球面距离是_.19.已知点在同一个球面上,若,则两点间的球面距离是 .20. 在正方体ABCDA1B1C1D1中,M为DD1的

10、中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是_.21ABC的顶点B在平面a内, A、C在a的同一侧,AB、BC与a所成的角分别是30和45,若AB=3,BC= ,AC=5,则AC与a所成的角为_.22矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为_.23已知点在同一个球面上,若,则两点间的球面距离是 .24正三棱锥的一个侧面的面积与底面积之比为23,则这个三棱锥的侧面和底面所成二面角的度数为_ .25.已知是球表面上的点,则球表面积等于_.26已知正方体的八个顶点都在球面上,且球的体积

11、为,则正方体的棱长为_.27. 一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为_.考点四 平行与垂直的证明1. 正方体,E为棱的中点() 求证:;() 求证:平面;()求三棱锥的体积2.已知正方体,是底对角线的交点.求证:() C1O面;(2)面3如图,矩形所在平面,、分别是和的中点.()求证:平面;()求证:;()若,求证:平面.4. 如图(1),ABCD为非直角梯形,点E,F分别为上下底AB,CD上的动点,且。现将梯形AEFD沿EF折起,得到图(2)(1)若折起后形成的空间图形满足,求证:;EBCFDA图(2)(2)若折起后形成的空间图形满足四点共面,求证:平面;ABCD

12、EF图(1)AFEBCDMN5如图,在五面体ABCDEF中,FA 平面ABCD, AD/BC/FE,ABAD,M为EC的中点,N为AE的中点,AF=AB=BC=FE=AD(I) 证明平面AMD平面CDE;(II) 证明平面CDE;PDABCOM6在四棱锥PABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中ADC60,M是PA的中点,O是DC中点.(1)求证:OM / 平面PCB;(2)求证:PACD;(3)求证:平面PAB平面COM.7如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F.(1)证明P

13、A/平面EDB;(2)证明PB平面EFD8.正四棱柱ABCD-A1B1C1D1的底面边长是,侧棱长是3,点E,F分别在BB1,DD1上,且AEA1B,AFA1D(1)求证:A1C面AEF;(2)求二面角A-EF-B的大小;(3)点B1到面AEF的距离.考点五 异面直线所成的角,线面角,二面角1.如图,四棱锥PABCD的底面ABCD为正方形,PD底面ABCD,PD=AD.求证:(1)平面PAC平面PBD;(2)求PC与平面PBD所成的角;2.如图所示,已知正四棱锥SABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为 _.3正六棱柱ABCDEFA1B1C1D1E1F1

14、底面边长为1,侧棱长为,则这个棱柱的侧面对角线E1D与BC1所成的角是_.4. 若正四棱锥的底面边长为2cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是_.5. 如图,在底面为平行四边形的四棱锥PABCD中,平面ABCD,且PAAB,点E是PD的中点.(1)求证:;(2)求证:平面AEC;(3)若,求三棱锥EACD的体积;(4)求二面角EACD的大小. 考点六 线面、面面关系判断题1已知直线l、m、平面、,且l,m,给出下列四个命题:(1),则lm(2)若lm,则(3)若,则lm(4)若lm,则其中正确的是_.2. 是空间两条不同直线,是空间两条不同平面,下面有四个命题: 其中真命题

15、的编号是_(写出所有真命题的编号)。3. 为一条直线,为三个互不重合的平面,给出下面三个命题:;其中正确的命题有_.4. 对于平面和共面的直线、 (1)若则(2)若则(3)若则 (4)若、与所成的角相等,则其中真命题的序号是_.5. 关于直线m、n与平面与,有下列四个命题:若且,则; 若且,则;若且,则; 若且,则;其中真命题的序号是_.6. 已知两条直线,两个平面,给出下面四个命题: 其中正确命题的序号是_.7.给出下列四个命题, 其中假命题的个数是_. 垂直于同一直线的两条直线互相平行; 垂直于同一平面的两个平面互相平行.若直线与同一平面所成的角相等,则互相平行.若直线是异面直线,则与都相交的两条直线是异面直线. 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁