2022年人教新课标版七年级数学上册复习提纲.docx

上传人:C****o 文档编号:59131550 上传时间:2022-11-09 格式:DOCX 页数:13 大小:156.14KB
返回 下载 相关 举报
2022年人教新课标版七年级数学上册复习提纲.docx_第1页
第1页 / 共13页
2022年人教新课标版七年级数学上册复习提纲.docx_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2022年人教新课标版七年级数学上册复习提纲.docx》由会员分享,可在线阅读,更多相关《2022年人教新课标版七年级数学上册复习提纲.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选学习资料 - - - - - - - - - 七年级数学上册复习提纲第一章有理数1.1 正数与负数正数:大于 0 的数叫正数;(依据需要,有时在正数前面也加上“+” )负数:在以前学过的 0 以外的数前面加上负号“ ” 的数叫 负数 ;与正数具有相反意义;0 既不是正数也不是负数;0 是正数和负数的分界,是唯独的中性数;留意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长削减等1.2 有理数1. 有理数( 1)整数 : 正整数、 0、负整数统称整数 integer,(2)分数 ; 正分数和负分数统称分数 fraction;(3)有理数;整数和分数统称有理数 rational

2、 number. 以用 m/n 其中 m,n 是整数, n 0 表示有理数; 2. 数轴( 1)定义:通常用一条直线上的点表示数,这条直线叫数轴 number axis;( 2)数轴三要素:原点、正方向、单位长度;( 3)原点:在直线上任取一个点表示数0,这个点叫做原点origin;( 4)数轴上的点和有理数的关系:全部的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数;只有符号不同的两个数叫做互为相反数 opposite number;(例: 2 的相反数是 -2 ;0 的相反数是 0)数轴上表示数 a 的点与原点的距离叫做数 a 的肯定值 absolute value, 记

3、作 |a| ;从几何意义上讲,数的绝对值是两点间的距离;一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0 的肯定值是0;两个负数,肯定值大的反而小;1.3 有理数的加减法有理数加法法就: 1. 同号两数相加,取相同的符号,并把肯定值相加; 2. 肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值;互为相反数的两个数相加得 0; 3. 一个数同 0 相加,仍得这个数;加法的交换律和结合律有理数减法法就:减去一个数,等于加这个数的相反数;1.4 有理数的乘除法0 相乘,都得0;有理数乘法法就:两数相乘,同号得正,异号得负,并把肯定值相乘;任何数同乘积是

4、 1 的两个数互为倒数;乘法交换律/ 结合律 / 安排律有理数除法法就:除以一个不等于0 的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把肯定值相除;0 除以任何一个不等于0 的数,都得0;1.5 有理数的乘方求 n 个相同因数的积的运算,叫乘方, 乘方的结果叫幂 (power);在 a 的 n 次方中, a 叫做底数 base number ,n 叫做指数( exponent );负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0 的任何次幂都是 0;有理数的混合运算法就:先乘方,再乘除,最终加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括

5、号、大括号依次进行;把一个大于 10 的数表示成 a 10 的 n 次方的形式,使用的就是科学计数法,留意 a 的范畴为 1a 10 ;从一个数的左边第一个非 0 数字起,到末位数字止,全部数字都是这个数的有效数字 significant digit;四舍五入遵从精确到哪一位就从这一位的下一位开头,而不是从数字的末尾往前四舍五入;比如:3.5449 精确到0.01 就是 3.54 而不是 3.55. 名师归纳总结 分类有理数大小的比较第 1 页,共 9 页- - - - - - -精选学习资料 - - - - - - - - - 加减正数与负数有理数数轴、相反数有理数运算乘除有理数的运算律运算

6、结果符号/ 肯定值、倒数肯定值乘方 / 开方科学计数法近似数 / 有效数 / 精确度混合运算其次章 整式的加减2.1 整式单项式:由数字和字母乘积组成的式子;系数,单项式的次数. 单项式指的是数或字母的积的代数式单独一个数或一个字母也是单项式因此,判定代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,如式子中含有加、减运算关系,其也不是单项式单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中全部字母的指数的和多项式:几个单项式的和;判定代数式是否是多项式,关键要看代数式中的每哪一项否是单项式每个单项式 称项,常数项,多项式的次数就是多项式中次数最高的

7、次数;多项式的次数是指多项式里次数最高项的次数,这里3 3a b 是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式特殊留意多项式的项包括它前面的性质符号它们都是用字母表示数或列式表示数量关系;留意单项式和多项式的每一项都包括它前面的符号;单项式和多项式统称为整式;2.2 整式的加减 同类项:所含字母相同,并且相同字母的指数也相同的项;与字母前面的系数(0)无关;2)相同字母的次数相同,二者缺一不行同类项与系 同类项必需同时满意两个条件:(1)所含字母相同;(数大小、字母的排列次序无关 合并同类项:把多项式中的同类项合并成一项;可以运用交换律,结合律和安排律;合并同类项法就:合并

8、同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的次序排列;假如括号外的因数是正(负)数,去括号后原括号内各项的符号与原先的符号相同(反);整式加减的一般步骤:1、假如遇到括号按去括号法就先去括号 . 2、结合同类项 . 3、合并同类项 2.3 整式的乘法法就 : 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ; 单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加;多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加; 2.4 整式

9、的除法法就 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,就连同它的指数 作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加;单项式:单项式的次数、系数 分类 多项式:多项式的项数、系数、次数升降幂排列 列式子整式名师归纳总结 - - - - - - -第 2 页,共 9 页精选学习资料 - - - - - - - - - 去添括号整式的加减合并同类项第三章 一元一次方程3.1 一元一次方程方程是含有未知数的等式;方程都只含有一个未知数(元)x,未知数 x 的指数都是1(次),这样的方程叫做一元一次方程linear eq

10、uation with one unknown;留意判定一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1. solution;解方程就是求出访方程中等号左右两边相等的未知数的值,这个值就是方程的解等式的性质: 1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等). 2)等式两边同时乘以或除以同一个不为零的数,等式不变 . 留意:运用性质时,肯定要留意等号两边都要同时变;运用性质 2 时,肯定要留意 0 这个数 . 3.2 解一元一次方程(一)-合并同类项与移项

11、一般步骤:移项合并同类项系数化 1;(可以省略部分)明白无限循环小数化分数的方法,从而证明它是分数,也就是有理数;3.3 解一元一次方程(二)-去括号与去分母一般步骤:去分母(方程两边同乘各分母的最小公倍数)去括号移项合并同类项系数化 1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不肯定完全用上,或有些步骤仍需要重复使用 . 因此,解方程时,要依据方程的特点,敏捷挑选方法. 在解方程时仍要留意以下几点:去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;去括号遵从先去小括号,再去中括号

12、,最终去大括号 不要漏乘括号的项;不要弄错符号;移项 把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像运算或化简题那样写能连等的形式 . 把方程化成 axb(a 0)的形式 字母及其指数不变系数化成 1 在方程两边都除以未知数的系数 a,得到方程的解不要分子、分母搞颠倒3.4 实际问题与一元一次方程一概念梳理列一元一次方程解决实际问题的一般步骤是:审题,特殊留意关键的字和词的意义,弄清相关数量关系,设出未知数(留意单位),依据相等关系列出方程,解这个方程,检验并写出答案(包括单位名称). 一些固

13、定模型中的等量关系:数字问题:abc表示一个三位数,就有 abc 100 a 10 b c行程问题:甲乙同时相向行走相遇时:甲走的路程 +乙走的路程 =总路程甲走的时间 =乙走的时间;甲乙同时同向行走追准时:甲走的路程乙走的路程=甲乙之间的距离=商品成本价 (1+利工程问题:各部分工作量之和 = 总工作量;=商品利润率 商品成本价或商品售价储蓄问题:本息和=本金 +利息商品销售问题:商品利润=商品售价商品成本价名师归纳总结 第 3 页,共 9 页- - - - - - -精选学习资料 - - - - - - - - - 润率)产油量 =油菜籽亩产量 X含油率 X 种植面积二思想方法(本单元常用

14、到的数学思想方法小结)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想 . 方程思想:用方程解决实际问题的思想就是方程思想 . 化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为 1 等各种同解变形,不断地用新的更简洁的方程来代替原先的方程,最终逐步把方程转化为 x=a 的形式 . 体现了化“ 未知” 为“ 已知” 的化归思想 . 数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展现出来,表达了数形结合的优越性 . 分类思想:在解含字母系数的方程和含肯定值符号的方

15、程过程中往往需要分类争论,在解有关方案设计的实际问题的过程中往往也要留意分类思想在过程中的运用 . 三典型例题例 1. 已知方程 2x m3+3x=5 是一元一次方程,就 m= . 解: 由一元一次方程的定义可知 m3=1,解得 m=4.或 m3=0,解得 m=3 所以 m=4或 m=3 警示: 很多同学做到这种题型时就想到指数是 1,从而写成 m=1,这里肯定要留意 x 的指数是( m 3). 例 2. 已知 x 2 是方程 ax 2( 2a3) x+5=0 的解,求 a 的值 . 解: x=2 是方程 ax 2( 2a 3)x+5=0 的解将 x=2 代入方程,得a ( 2)2( 2a3)

16、 ( 2)+5=0 化简,得 4a+4a 6+5=0 1 a=8点拨: 要想解决这道题目,应当从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把 x=2 代入方程,然后再解关于a 的一元一次方程就可以了. 例 3. 解方程 2(x+1) 3( 4x3) =9(1 x). 解: 去括号,得 2x+2 12x+9=99x,移项,得 2+9 9=12x2x 9x. 合并同类项,得 2=x ,即 x=2. 点拨: 此题的一般解法是去括号后将全部的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发觉全部的未知项移到方程的左边合并同类项后系数不为正,为了削减运算的难

17、度,我们可以依据等式的对称性,把全部的未知项移到右边去,已知项移到方程的左边,最终再写成1x=a 的形式 . 例 4. 解方程111x213571. 864解析: 方程两边乘以8,再移项合并同类项,得1 1x21356 4同样,方程两边乘以6,再移项合并同类项,得1x21314方程两边乘以4,再移项合并同类项,得x211方程两边乘以2,再移项合并同类项,得x=3. 说明: 解方程时,遇到多重括号,一般的方法是从里往外或从外往里运用乘法的安排律逐层去特号,而此题最名师归纳总结 - - - - - - -第 4 页,共 9 页精选学习资料 - - - - - - - - - 简捷的方法却不是这样,

18、是通过方程两边分别乘以一个数,达到去分母和去括号的目的;4x1.55x0.81.2x51.2x 10例 5. 解方程0.50.20.1. 4x1.525x0.8解析: 方程可以化为0.520.250.1 10整理,得24x1.555x0.8101.2x11去括号移项合并同类项,得7x=11,所以 x=7 . 说明: 一见到此方程,很多同学立刻想到老师介绍的方法,那就是把分母化成整数,即各分数分子分母都乘以10,再设法去分母,其实,认真观看这个方程,我们可以将分母化成整数与去分母两步一步到位,第一个分数分子分母都乘以 2,其次个分数分子分母都乘以 5,第三个分数分子分母都乘以 10. x x x

19、 x1.例 6. 解方程 6 12 20 30x x x x 1.解析: 原方程可化为 2 3 3 4 4 5 5 6x x x x x x x x1.方程即为 2 3 3 4 4 5 5 6x x1.所以有 2 6再来解之,就能很快得到答案: x=3. 学问链接: 此题假如直接去分母,或者通分, 数字较大, 运算烦琐, 发觉分母 6=2 3,12=3 4,20=4 5,30=5 6,联系到我们学校曾做过这样的分式化简题,故采纳拆项法解之比较简便 . 例 7. 参与某保险公司的医疗保险,住院治疗的病人可享受分段报销,.保险公司制度的报销细就如下表,某人今年住院治疗后得到保险公司报销的金额是 1

20、260 元,那么此人的实际医疗费是()住院医疗费(元)报销率( %)不超过 500 的部分 0 超过 5001000 的部分 60 超过 10003000 的部分 80 A. 2600 元 B. 2200 元 C. 2575 元 D. 2525 元解析: 设此人的实际医疗费为 x 元,依据题意列方程,得500 0+500 60%+( x500500) 80%=1260. 解之,得 x=2200,即此人的实际医疗费是 2200 元. 应选 B. 点拨: 解答此题第一要弄清题意,读懂图表,从中应懂得医疗费是分段运算累加求和而得的 . 由于 500 60%12602000 80%,所以可知判定此人的

21、医疗费用应按第一档至第三档累加运算 . 例 8. 我市某县城为勉励居民节省用水,对自来水用户按分段计费方式收取水费:如每月用水不超过 7 立方米,就按每立方米 1 元收费;如每月用水超过 7 立方米,就超过部分按每立方米 2 元收费 . 假如某户居民今年 5 月缴纳了 17 元水费,那么这户居民今年5 月的用水量为 _立方米 . 解析: 由于 1 7 17,所以该户居民今年 5 月的用水量超标 . 设这户居民 5 月的用水量为 x 立方米,可得方程: 7 1+2(x7) =17,解得 x=12. 名师归纳总结 - - - - - - -第 5 页,共 9 页精选学习资料 - - - - - -

22、 - - - 所以,这户居民5 月的用水量为12 立方米 . 1 分,输一场得0 分,一支足球队在某个赛季中共需比例 9. 足球竞赛的记分规章为:胜一场得3 分,平一场得赛 14 场,现已竞赛了8 场,输了 1 场,得 17 分,请问:前 8 场竞赛中,这支球队共胜了多少场?这支球队打满 14 场竞赛,最高能得多少分?通过对竞赛情形的分析,这支球队打满 14 场竞赛,得分不低于 29 分,就可以达到预期的目标,请你分析一下,在后面的 6 场竞赛中,这支球队至少要胜几场,才能达到预期目标?解析: 设这个球队胜了 x 场,就平了( 81 x)场,依据题意,得 3x+(81x) =17. 解得 x=

23、5. 所以,前 8 场竞赛中,这个球队共胜了 5 场. 打满 14 场竞赛最高能得 17+(148) 3=35 分. 由题意知,以后的 6 场竞赛中,只要得分不低于 12 分即可 . 胜不少于 4 场,肯定能达到预期目标 . 而胜了 3 场,平 3 场,正好达到预期目标 . 所以在以后的竞赛中,这个球队至少要胜 3 场 . 例 10. 国家为了勉励青少年成才,特殊是贫困家庭的孩子能上得起高校,设置了训练储蓄,其优惠在于,目前暂不征收利息税. 为了预备小雷5 年后上高校的学费6000 元,他的父母现在就参与了训练储蓄,小雷和他父母争论了以下两种方案:先存一个 2 年期, 2 年后将本息和再转存一

24、个 3 年期;直接存入一个 5 年期 . 你认为以上两种方案,哪种开头存入的本金较少 . 训练储蓄(整存整取)年利率一年:2. 25% ;二年: 2. 27% ;三年: 3. 24% ;五年: 3. 60%. 解析: 明白储蓄的有关学问,把握利息的运算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开头存入 x 元. 然后分别运算两种方案哪种开头存入的本金较少 . 2 年后,本息和为 x(1+2. 70% 2) =1. 054x ;再存 3 年后,本息和要达到 6000 元,就 1. 054x (1+3. 24% 3) =6000. 解得 x 5188. 按其次种方案,可得方程 x (

25、1+3. 60% 5) =6000. 解得 x 5085. 所以,按他们争论的其次种方案,开头存入的本金比较少. . 假如长方体盒子的长比宽多4cm,求这例 11. 扬子江药业集团生产的某种药品包装盒的侧面绽开图如下列图种药品包装盒的体积. 14cm,所以一个宽与一个高的和为7cm,假如设分析: 从绽开图上的数据可以看出,绽开图中两高与两宽和为这种药品包装盒的宽为 xcm,就高为( 7x)cm,由于长比宽多 4cm,所以长为( x+4)cm,依据绽开图可知一个长与两个高的和为 13cm,由此可列出方程 . 解: 设这种药品包装盒的宽为 xcm,就高为( 7 x)cm,长为( x+4)cm. 依

26、据题意,得(x+4)+2(7x)=13,解得 x=5 ,所以 7x=2,x+4=9. 故长为 9cm,宽为 5cm,高为 2cm. 所以这种药品包装盒的体积为:9 5 2=90(cm 3). 例 12. 某石油进口国这个月的石油进口量比上个月削减了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率. 第 6 页,共 9 页解: 设这个月的石油价格相对上个月的增长率为x. 依据题意得名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - (1x)(15%)=114% 解得 x=20% 答: 这个月的石油价

27、格相对上个月的增长率为 20%. 点评: 此题是一道增长率的应用题 . 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格 . 设出未知数,分别表示出每一个数量,列出方程进行求解 . 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答 . 例 13. 某市参与省中学数学竞赛的选手平均分数为 78 分,其中参赛的男选手比女选手多 50%,而女选手的平均分比男选手的平均分数高 10%,那么女选手的平均分数为 _. 解析: 总平均分数和参赛选手的人数及其得分有关 . 因此,必需增设男选手或女选手的人数为帮助未知数 . 不妨设男选手的平均分数

28、为 x 分,女选手的人数为 a 人,那么女选手的平均分数为 1. 1x 分,男选手的人数为 1. 1.5 a x 1.1 x a785a 人,从而可列出方程 1.5 a a,解得 x=75,所以 1. 1x=82. 5. 即女选手的平均分数为 82. 5分. 四、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应当留意什么问题. . 3. 列方程2. 查找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等解应用题的检验包括两个方面:检验求得的结果是不是方程的解;是要判定方程的解是否符合题目中的实际意义 . 【模拟试题】一、挑选题:1. 几个同

29、学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()、A、28 B、33 C、 45 D、57 2. 已知 y=1 是方程 21my2y的解,就关于 x 的方程 m(x+4)=m(2x+4)的解是()A、x=1 B3x= 1 C、x=0 D、方程无解3 某种商品的进价为1200 元,标价为1750 元,后来由于该商品积压,商店预备打折出售,但要保持利润不低于5 ,就至多可打()A、6 折 B、7 折 C、8 折 D、9 折4. 以下说法中,正确选项()A、代数式是方程 B、方程是代数式 C、等式是方程 D、方程是等式15. 一个数的3与 2 的差等于这个数的一半这个数是()30, A

30、、12 B、 12 C、18 D、 18 6. 母亲 26 岁结婚,其次年生了儿子,如干年后,母亲的年龄是儿子的3 倍. 此时母亲的年龄为( A 、39 岁 B、42 岁 C、45 岁 D、48 岁7. A、B 两地相距 240 千米,火车按原先的速度行驶需要4 小时到达目的地, 火车提速后, 速度比原先加快那么提速后只需要()即可到达目的地;A、33小时 B、31小时 C、43小时 D、41小时10131013二、填空题8. 已知甲数比乙数的2 倍大 1,假如设甲数为x,那么乙数可表示为_;假如设乙数为y,那么甲数可表示为_. 9. 欢欢的生日在8 月份在今年的8 月份日历上,欢欢生日那天的

31、上、下、左、右4 个日期的和为76,那么欢欢的生日是该月的 10. 从甲地到乙地,公共汽车原需行驶名师归纳总结 - - - - - - -号. 7 小时,开通高速大路后,车速平均每小时增加了20 千米,只需5 小时第 7 页,共 9 页精选学习资料 - - - - - - - - - 即可到达;甲乙两地的路程是;三、解答题11. 解以下方程(1)5 x8 62x7 5(2)x422x31. 经顾客投诉后,3243 元. 请你帮小612. 一家商店将某型号彩电先按原售价提高40 ,然后在广告中写上“ 大酬宾,八折优惠”执法部门按已得非法收入的10 倍处以每台2700 元的罚款 . 求每台彩电的原

32、价格. 13. 小明的爸爸三年前为小明存了一份 3000 元的训练储蓄 . 今年到期时取出,得本利和为明算一算这种储蓄的年利率. 14. 在社会实践活动中,某校甲、乙、丙三位同学一起调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情形如下:甲同学说:“ 二环路车流量为每小时 10 000 辆” . 乙同学说:“ 四环路比三环路车流量每小时多 2000 辆” . 丙同学说:“ 三环路车流量的 3 倍与四环路车流量的差是二环路车流量的 2 倍” . 请你依据他们所供应的信息,求出高峰时段三环路、四环路的车流量各是多少?【试题答案】1.

33、 A. 提示:日历上纵列上的三个数的和是中间一个数的 3 倍 2. C. 提示:将 y=1 代入方程得 m的值,再将 m代入 m(x+4)=m(2x+4) 1575 x 12005 %3. C. 提示:设至多可打 x 折,可得方程 1200 解得 x=0. 8 4. D. 提示:方程是含未知数的等式 1 1x 2 x5. B. 提示:设这个数为 x. 可得方程 3 2 . 解得 x=12. 6. A. 提示:设 x 年后,母亲的年龄是儿子的 3 倍,可得方程 27+x=3(1+x) 7. B. 提示:设原先速度为 x 千米 / 时,就 x=60 千米 / 时 x 18. 2,2y+1 提示:依

34、据等量关系甲数 =2 乙数 +1 来解此题 9. 19 提示:设欢欢的生日为 x 号,可得方程 x1+x+1+x+7+x7=76 10. 350 千米 提示:设间接未知数,设原车速为 x 千米 / 时,就开通高速大路后,车速为(x+20)千米 / 时,列方程得 7x=5(x+20),解得 x=50,所以两地路程为 7 50=350(千米) . 11. 去括号,得 5x+40=12x42+5 移项合并同类项,得 7x=77 系数化 1,得 x=11 去分母,得 3(x+2) 2(2x3)=12 去括号,得 3x+64x+6=12 移项合并同类项,得 x=0 1 xx依据题意,可得方程 3 =3

35、1 xx再解这个方程,得 x=5 所以,当 x=5 时,代数式 3 的值等于 3. 12. 设每台彩电的原价格为 x 元,依据题意,列方程得 (1+40%)x 0. 8 x 10=2700解这个方程,得x=2250,答:每台彩电的原价为2250 元 . 第 8 页,共 9 页13. 设这种储蓄的年利率为x,依据题意,列方程3000+3000x 3=3243,解这个方程,得x=0. 027 ,即 x=2. 7% ,答:这种储蓄的年利率为2. 7%. 14. 设三环路的车流量是每小时x 辆,就四环路为(x+2000)辆,依据题意,列方程,得名师归纳总结 - - - - - - -精选学习资料 -

36、- - - - - - - - 3x( x+2000)=2 10000,解得 x=11000,所以 x+2000=13000,答:三环路的车流量为 11000 辆,四环路的车流量为 13000 辆. 第四章 图形熟悉初步4.1 多姿多彩的图形外形:方的、园的等几何图形 大小:长度、面积、体积等位置:相交、垂直、平行等几何体也简称体 solid;包围着体的是面(surface );常见的立体图形(solid figure):柱体、椎体、球体等各部分不都在一个平面内;在一个平面内就是平面图形 plane figure;绽开图( net ):识记一些常用的绽开图;圆柱 / 圆锥的侧面绽开图;点线面体

37、:是组成几何图形的基本元素;4.2 直线、射线、线段线段公理:两点的全部连线中,线段做短(两点之间,线段最短);连接两点间的线段的长度,叫做这两点的距离;经过两点有一条直线,并且只有一条直线;两点确定一条直线;4.3 角定义:有公共端点的两条射线组成的图形叫角;角的端点为顶点,两条射线为角的两边; 1度=60 分 1分=60 秒 1周角 =360 度 1平角 =180 度角的比较与运算角的平分线:假如两个角的和等于90 度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角;假如两个角的和等于180 度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角;等角(同角)的补角相等;等角(同角)的余角相等;实际运用:航海的坐标角度:“ 上北下南左西右东”. 4.4 设计制作长方形外形的包装纸盒名师归纳总结 - - - - - - -第 9 页,共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁