《2014年江苏高考数学科考试说明及典型题示例.doc》由会员分享,可在线阅读,更多相关《2014年江苏高考数学科考试说明及典型题示例.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2014年江苏省高考说明数学科一、命题指导思想普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学历的考生参加选拔性考试.高等学校根据考试考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考试卷应具有较高的信度、效度以及必要的区分度和适当的难度.根据普通高等学校对新生文化素质的要求,2014年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的普通高中数学课程标准(实验),参照普通高等学校招生全国统一考试大纲(课程标准实验版),结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所需要(原来是“必须”)
2、的基本能力.1突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料
3、中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3注重数学的应用意识和创新意识的考查数学
4、的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容主要是选修系列2(删“不含选修系列1”)中的内容以及选修系列4中专题4-1几何证明选讲、4-2矩阵与变换、4-4坐标系与参数方程、4-5不等式选讲这4个专题的内容
5、(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.具体考查要求如下:1必做题部分内 容要 求ABC1集合集合及其表示子集交集、并集、补集2函数概念与基本初等函数函数的概念函数的基本性质指数与对数指数函数的图象与性质对数函数的图象与性质幂函数函数与方程函数模型及其应用3基本初等函数(三角函数)、三角恒等变换三角函数的概念同角三角函数的
6、基本关系式三角函数(原“正弦函数、余弦函数”)的诱导公式正弦函数、余弦函数、正切函数的图象与性质函数的图象与性质两角和(差)的正弦、余弦及正切二倍角的正弦、余弦及正切4解三角形正弦定理、余弦定理及其应用5平面向量平面向量的概念平面向量的加法、减法及数乘运算平面向量的坐标表示平面向量的数量积平面向量的平行与垂直平面向量的应用6数列数列的概念等差数列等比数列7不等式基本不等式一元二次不等式线性规划8复数复数的概念复数的四则运算复数的几何意义9导数及其应用导数的概念导数的几何意义导数的运算利用导数研究函数的单调性与极值导数在实际问题中的应用10算法初步算法的含义流程图基本算法语句11常用逻辑用语命题
7、的四种形式充分条件、必要条件、充分必要条件简单的逻辑联结词全称量词与存在量词12推理与证明合情推理与演绎推理分析法与综合法反证法13概率、统计抽样方法总体分布的估计总体特征数的估计随机事件与概率古典概型几何概型互斥事件及其发生的概率14空间几何体柱、锥、台、球及其简单组合体柱、锥、台、球的表面积和体积15点、线、面之间的位置关系平面及其基本性质直线与平面平行、垂直的判定及性质两平面平行、垂直的判定及性质16平面解析几何初步直线的斜率和倾斜角直线方程直线的平行关系与垂直关系两条直线的交点两点间的距离、点到直线的距离圆的标准方程与一般方程直线与圆、圆与圆的位置关系17圆锥曲线与方程中心在坐标原点的
8、椭圆的标准方程与几何性质中心在坐标原点的双曲线的标准方程与几何性质顶点在坐标原点的抛物线的标准方程与几何性质2附加题部分内 容要 求ABC选修系列:不含选修系列中的内容1圆锥曲线与方程曲线与方程顶点在坐标原点的抛物线的标准方程与几何性质2空间向量与立体几何空间向量的概念空间向量共线、共面的充分必要条件空间向量的加法、减法及数乘运算空间向量的坐标表示空间向量的数量积空间向量的共线与垂直直线的方向向量与平面的法向量空间向量的应用3导数及其应用简单的复合函数的导数4推理与证明数学归纳法的原理数学归纳法的简单应用5计数原理加法原理与乘法原理排列与组合二项式定理6概率、统计离散型随机变量及其分布列超几何
9、分布条件概率及相互独立事件次独立重复试验的模型及二项分布离散型随机变量的均值与方差内容要求ABC 选修系列中个专题 7几何证明选讲相似三角形的判定与性质定理射影定理圆的切线的判定与性质定理圆周角定理,弦切角定理相交弦定理、割线定理、切割线定理圆内接四边形的判定与性质定理8矩阵与变换矩阵的概念二阶矩阵与平面向量常见的平面变换变换(原“矩阵”)的复合与矩阵的乘法二阶逆矩阵二阶矩阵的特征值与特征向量二阶矩阵的简单应用9.坐标系与参数方程坐标系的有关概念简单图形的极坐标方程极坐标方程与直角坐标方程的互化参数方程直线、圆及椭圆的参数方程参数方程与普通方程的互化参数方程的简单应用10不等式选讲不等式的基本
10、性质含有绝对值的不等式的求解不等式的证明(比较法、综合法、分析法)算术-几何平均不等式与柯西不等式利用不等式求最大(小)值运用数学归纳法证明不等式三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1必做题 必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(删“不含选修系列1”)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4
11、、4-5这4个专题的内容,考生(删“只须”)从中选2题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中所占分值的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中所占分值的比例大致为5:4:1.四、典型题示例A.必做题部分(一)填空题1. 设复数满足(i是虚数单位),则的实部是 .【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】2. 设集合,则实数的值为 .【解析】本
12、题主要考查集合的概念、运算等基础知识.本题属容易题.结束kk +1开始k1k25k+40N输出k Y【答案】1.3. 右图是一个算法流程图,则输出的k的值是 【解析】本题主要考查算法流程图的基础知识,本题属容易题.【答案】54. 函数的定义域为 .【解析】本题主要考查对数函数的定义域等基础知识,本题属容易题.【答案】5.某棉纺厂为了解一批棉花的质量,从中随机抽取了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间中,其频率分布直方图如图所示,则在抽测的根中,有_ _根棉花纤维的长度小于.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题.【答案】由频率分布
13、直方图观察得棉花纤维长度小于的频率为,故频数为.6. 现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 【解析】本题主要考查等比数列的定义,古典概型.本题属容易题.【答案】0.6.7. 已知两个单位向量向量,的夹角为,.若,则实数的值为 .【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识.本题属容易题.【答案】.DABC8. 如图,在长方体中,则四棱锥的体积为 cm3【解析】本题主要考查四棱锥的体积,考查空间想象能力和运算能力.本题属容易题.【答案】6.9.设直线是曲线的一条切线,则实数的值是 .【解析】
14、本题主要考查导数的几何意义、切线的求法.本题属中等题.【答案】.10函数是常数,的部分图象如图所示,则= .【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值本题属中等题 【答案】.11.设为等差数列的前项若,则正整数= .【解析】本题主要考查等差数列的前项等基础知识,考查灵活运用有关知识解决问题的能力本题属中等题【答案】512在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 .【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查灵活运用相关知识解决问题的能力本题属中等题【答案】13. 设为实
15、数, 是定义在R上的奇函数,且当时,,若对一切成立,则的取值范围是_ _.【解析】本题主要考查函数的奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题.【答案】14.已知正数满足:则的取值范围是 .【解析】本题主要考查代数式的变形和转化能力, 考查灵活运用有关的知识解决问题的能力.本题属难题.【答案】.(二)解答题15在中,角A,B,C的对边分别为,已知, .(1)求值; (2)求的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.【参考答案】(1)在中,因为, 故由正弦定理得,所以故(2)由(
16、1)知,所以又因为,所以,从而在中,因为所以所以由正弦定理得16如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点求证:(1)平面平面; (2)直线平面 【解析】本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力本题属容易题【参考答案】证明:(1)是直三棱柱,平面,又平面,.又平面,平面,又平面,平面平面.(2),为的中点,.又平面,且平面,.又平面,平面.由(1)知,平面,.又平面平面,直线平面.17. 请你设计一个包装盒,如图所示,是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形
17、成一个正四棱柱形状的包装盒,在上是被切去的一个等腰直角三角形斜边的两个端点,设.(1)若广告商要求包装盒侧面积S(cm)最大,试问应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.【解析】本题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象能力、数学阅读能力及解决实际问题的能力本题属中等题【参考答案】设包装盒的高为,底面边长为.由题设知(1)所以当时,取得最大值(2),由得(舍),或.当时,递增;当时, 递减所以当时,取得极大值,此时由题设的实际意义可知时,取得最大值,此时包装盒的高与底面边长的比值为.18. 如图,在平面直
18、角坐标系中,过坐标原点的直线交椭圆 于两点,其中点在第一象限,过作轴的垂线,垂足为,连结,并延长交椭圆于点,设直线的斜率为.(1)当时,求点到直线的距离;(2)对任意,求证:.【解析】本题主要考查椭圆的标准方程、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力、推理论证能力本题属中等题【参考答案】(1)直线的方程为,代入椭圆方程得,解得因此,于是,直线的斜率为,故直线的方程为.因此,点到直线的距离为.(2)解法一:将直线的方程代人,解得记,则,于是,从而直线的斜率为,其方程为.代入椭圆方程得,解得或.因此,于是直线的斜率,因此所以解法二:设,则且设直线PB,AB的斜率分别为
19、因为C在直线AB上,所以从而因此所以19.已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致(1)设,若函数和在区间上单调性一致,求实数b的取值范围;(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.【解析】本题主要考查函数的概念、性质的基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力本题属难题【参考答案】(1)因为函数和在区间上单调性一致,所以,即即(2)当时,因为,函数和在区间(b,a)上单调性一致,所以,即,设,考虑点(b,a)的可行域,函数的斜率为1的切线的切点设为则;当时,因为,函数和
20、在区间(a, b)上单调性一致,所以,即,当时,因为,函数和在区间(a, b)上单调性一致,所以,即而x=0时,不符合题意, 当时,由题意:综上可知,.20.设M为部分正整数组成的集合,数列的首项,前n项和为,已知对任意整数k属于M,当nk时,都成立.【解析】本题以等差数列、等比数列为平台,主要考查学生的探索与推理能力本题属难题【参考答案】(1)设M=1,求的值;(2)设M=3,4,求数列的通项公式.解析:(1)即:所以,n1时,成等差,而,(2)由题意:,当时,由(1)(2)得:由(3)(4)得: 由(1)(3)得:由(2)(4)得:由(7)(8)知:成等差,成等差;设公差分别为:由(5)(
21、6)得:由(9)(10)得:成等差,设公差为d,在(1)(2)中分别取n=4,n=5得:B附加题部分1选修 几何证明选讲如图,是圆的直径,为圆上一点,过点作圆的切线交的延长线于点,若,求证:【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力本题属容易题【参考答案】连结,因为是圆的直径,所以因为是圆的切线,所以,又因为所以于是从而即得故2选修矩阵与变换已知矩阵,求矩阵.【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力本题属容易题【参考答案】设矩阵A的逆矩阵为,则=,即=,故a=-1,b=0,c=0,d=矩阵A的逆矩阵为,=3选修坐标系与参数方
22、程在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力.本题属容易题【参考答案】圆圆心为直线与极轴的交点,在中令,得.圆的圆心坐标为(1,0).圆经过点,圆的半径为.圆经过极点.圆的极坐标方程为.4选修不等式选讲已知是非负实数,求证:【解析】本题主要考查证明不等式的基本方法. 考查推理论证能力,本题属容易题【参考答案】由是非负实数,作差得当时,从而得当时,,从而得所以5. 如图,在正四棱柱中,点是的中点,点在上,设二面角的大小为.(1)当时,求的长;(2)当时,求的长.【解析】本题主要考查空间向量的基础知识,考
23、查运用空间向量解决问题的能力本题属中等题【参考答案】建立如图所示的空间直角坐标系.设,则各点的坐标为所以,.设平面的法向量为,则,即,令,则所以是平面的一个法向量.设平面的法向量为,则即,令,则所以是平面的一个法向量,从而(1)因为,所以解得,从而所以(2)因为所以因为或,所以,解得或.根据图形和(1)的结论可知,从而的长为.6. 设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望【解析】本题主要考查概率分布、数学期望等基础知识,考查运算求解能力本题属中等题,【参考答案】(1)若两条棱相交,则交点必为正方体8个顶点中的一个,而过正方体的任意1个顶点恰有3条棱,所以共有对相交棱, 因此.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对, 故,于是,所以随机变量的分布列是:01因此, .第 22 页 共 22 页