全等三角形中做辅助线的技巧.doc





《全等三角形中做辅助线的技巧.doc》由会员分享,可在线阅读,更多相关《全等三角形中做辅助线的技巧.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|全等三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。1、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种
2、。从角平分线上一点向两边作垂线;利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。与角有关的辅助线(一) 、截取构全等如图 1-1,AOC=BOC,如取 OE=OF,并连接 DE、DF,则有OEDOFD,从而为我们证明线段、角相等创造了条件。例 1 如图 1-2,AB/CD,BE 平分BCD,CE 平分BCD,点 E 在 AD 上,求证:BC=AB+CD。图 1-1OABDEFC图 1-2ADB CEF例 2 已知:如图 1-3,AB=2AC,BAD=CA
3、D,DA=DB,求证 DCAC例 3 已知:如图 1-4,在ABC 中,C=2B,AD 平分BAC,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢?练习1 已知在ABC 中,AD 平分BAC,B=2C,求证:AB+BD=AC2 已知:在ABC 中,CAB=2B,AE 平分CAB 交 BC 于 E,AB=2AC,求证:AE=2CE3 已知:在ABC 中,ABAC,AD 为BAC 的平分线,M 为 AD 上任一点。求证:BM-CMAB-AC
4、图 1-4AB CDE4 已知:D 是ABC 的BAC 的外角的平分线 AD 上的任一点,连接 DB、DC。求证:BD+CDAB+AC。(二) 、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。例 1 如图 2-1,已知 ABAD, BAC=FAC,CD=BC。求证:ADC+B=180 分析:可由 C 向BAD 的两边作垂线。近而证ADC与B 之和为平角。例 2 如图 2-2,在ABC 中,A=90 ,AB=AC,ABD=CBD。求证:BC=AB+AD分析:过 D 作 DEBC 于 E,则 AD=DE=CE,则构造出全等三角形,从
5、而得证。此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。例 3 已知如图 2-3,ABC 的角平分线 BM、CN 相交于点 P。求证:BAC的平分线也经过点 P。分析:连接 AP,证 AP 平分BAC 即可,也就是证 P 到 AB、AC 的距离相等。练习:图 2-1ABCDEF 图 2-2AB CDE图 2-3PAB CMND F1如图 2-4AOP=BOP=15 ,PC/OA,PDOA, 如果 PC=4,则 PD=( )A 4 B 3 C 2 D 12已知在ABC 中,C=90 ,AD 平分CAB,CD=1.5,DB=2.5.求 AC。3已知:如图 2-5, BAC=CAD,ABA
6、D,CEAB,AE= (AB+AD).求证:D+B=180 。214.已知:如图 2-6,在正方形 ABCD 中,E 为 CD 的中点,F 为 BC 上的点,FAE=DAE。求证:AF=AD+CF。5 已知:如图 2-7,在 RtABC 中,ACB=90 ,CDAB,垂足为 D,AE 平分CAB 交 CD 于 F,过 F 作 FH/AB 交 BC 于 H。求证 CF=BH。(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。 (如
7、果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交) 。例 1 已知:如图 3-1,BAD=DAC,ABAC,CDAD 于 D,H 是 BC 中点。求证:DH= (AB-AC)2图 2-4BO APDC图 2-5ABDCE 图 2-6EAB CDF图 2-7FDCBAEH图 图 3-1ABCDHE分析:延长 CD 交 AB 于点 E,则可得全等三角形。问题可证。例 2 已知:如图 3-2,AB=AC,BAC=90 ,AD 为ABC 的平分线,CEBE.求证:BD=2CE。分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。例 3已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 辅助线 技巧

限制150内