《证券投资组合理论-马科维兹的均值一方差模型(powerpoint 96).pptx》由会员分享,可在线阅读,更多相关《证券投资组合理论-马科维兹的均值一方差模型(powerpoint 96).pptx(96页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、11/8/20221v教学目的及要求 1、了解当效用函数是二次函数或者资产回报率服从正态分布是,均值方差可以完全用于刻画个体的偏好。2、掌握均值方差模型描述的构建最优投资组合的技术路径的规范数理模型3、掌握证券投资组合的系统性风险和非系统性风险的内涵及与市场收益的关系v重点内容掌握马科维兹投资组合理论的假设条件的合理性及选择最优投资组合的数理方法,及其中蕴涵的多元化投资、风险、收益间关系。11/8/20222第一节马科维兹投资组合理论的假设和主要内容第二节证券收益与风险的度量均值、方差及协方差投资组合的风险分散效应与第三节证券投资组合的可行集、有效集与最优投资组合第四节两基金分离定理投资组合构
2、建的指数策略11/8/20223第一节马科维兹投资组合理论的假设条件和主要内容一、一、主要内容主要内容二、假设条件二、假设条件三、二次效用函数和市场的资产回报三、二次效用函数和市场的资产回报 率服从正态分布率服从正态分布11/8/20224马科维茨(H.Markowitz,1927)证券组合选择理论有着棕黄色头发,高大身材,总是以温和眼神凝视他人,说话细声细语并露出浅笑。11/8/20225一、主要内容金融决策的核心问题是什么?不确定条件下收益与风险的权衡收益与风险的权衡tradeoff between risk and return11/8/20226研究不确定性经济问题的几种(数理方法):
3、研究不确定性经济问题的几种(数理方法):1.效用函数分析法效用函数分析法2.缺乏实际的可操作性,因为完全刻画一个人缺乏实际的可操作性,因为完全刻画一个人在所有状态下的效用是几乎不可能的在所有状态下的效用是几乎不可能的2.均值均值方差分析法方差分析法 避免讨论具体的效用函数,灵活且操作性强。避免讨论具体的效用函数,灵活且操作性强。3、一般均衡分析法、一般均衡分析法但不是金融经济学的典但不是金融经济学的典型方法型方法4、套利分析法、套利分析法方法论的里程碑方法论的里程碑11/8/20227v瑞典皇家科学院决定将1990年诺贝尔奖授予纽约大学哈利.马科维茨(Harry Markowitz)教授,为了
4、表彰他在金融经济学理论中的先驱工作资产组合选择资产组合选择理论理论。11/8/20228发展了一个在不确定条件下严格陈述的可操作的选择资产组合理论:均值方差方法均值方差方法 Mean-Variance methodology.这个理论演变成进一步研究金融经济学的基础.这一理论通常被认为是现代金融学的发端.这一理论的问世,使金融学开始摆脱了纯粹的描述性研究和单凭经验操作的状态,标志着数量化方法进入金融领域。马科维茨的工作所开始的数量化分析和MM理论中的无套利均衡思想相结合,酝酿了一系列金融学理论的重大突破。主要贡献11/8/20229v投资组合理论的基本思想:投资组合是一个风险与收益的trade
5、off问题,此外投资组合通过分散化的投资来对冲掉一部分风险。“nothingventured,nothinggained”for a given level of return to minimize the risk,and for a given level of risk level to maximize the return“Dont put all eggs into one basket”11/8/202210马科维兹模型概要马科维兹于1952年提出的“均值方差组合模型”是在禁止融券和没有无风险借贷的假设下,以资产组合中个别股票收益率的均值和方差找出投资组合的有效边界(Effic
6、ientFrontier),即一定收益率水平下方差最小的投资组合,并导出投资者只在有效边界上选择投资组合。根据马科维兹资产组合的概念,欲使投资组合风险最小,除了多样化投资于不同的股票之外,还应挑选相关系数较低的股票。因此,马科维兹的“均值方差组合模型”不只隐含将资金分散投资于不同种类的股票,还隐含应将资金投资于不同产业的股票。同时马科维兹均值方差模型也是提供确定有效边界的技术路径的一个规范性数理模型。11/8/202211v实现方法:q收益证券组合的期望报酬q风险证券组合的方差q风险和收益的权衡求解二次规划 11/8/202212q首首先先,投投资资组组合合的的两两个个相相关关特特征征是是:(
7、1 1)它它的的期期望望回回报报率率(2 2)可可能能的的回回报报率率围围绕绕其其期期望望偏偏离离程程度度的的某某种种度度量量,其其中中方方差差作作为为一一种种度度量量在在分分析析上上是是最最易易于于处理的。处理的。q其其次次,理理性性的的投投资资者者将将选选择择并并持持有有有有效效率率投投资资组组合合,即即那那些些在在给给定定的的风风险险水水平平下下的的期期望望回回报报最最大大化化的的投投资资组组合合,或或者者那那些些在在给给定定期期望望回回报报率率水水平平上上的的使使风风险最小化的投资组合险最小化的投资组合。11/8/202213q再再次次,通通过过对对某某种种证证券券的的期期望望回回报报
8、率率、回回报报率率的的方方差差和和某某一一证证券券与与其其它它证证券券之之间间回回报报率率的的相相互互关关系系(用用协协方方差差度度量量)这这三三类类信信息息的的适适当当分分析析,辨辨识识出出有有效效投投资组合在理论上是可行的。资组合在理论上是可行的。q最后,通过求解二次规划,可以算出有最后,通过求解二次规划,可以算出有效投资组合的集合,计算结果指明各种效投资组合的集合,计算结果指明各种证券在投资者的资金中占多大份额,以证券在投资者的资金中占多大份额,以便实现投资组合的效性便实现投资组合的效性即对给定的即对给定的风险使期望回报率最大化,或对于给定风险使期望回报率最大化,或对于给定的期望回报使风
9、险最小化。的期望回报使风险最小化。11/8/202214一些需准备的概念一些需准备的概念1.证券投资组合的选择狭义的定义:是指如何构筑各种有价证券的头寸(包括多头和空头)来最好地符合投资者的收益和风险的权衡。广义的定义:包括对所有资产和负债的构成做出决策,甚至包括人力资本(如教育和培训)的投资在内。我们的讨论限于狭义的含义。11/8/202215尽管存在一些对理性的投资者来说应当遵循的一般性规律,但在金融市场中,并不存在一种对所有投资者来说都是最佳的投资组合或投资组合的选择策略,原因如下:1.投资者的具体情况2.投资周期的影响3.对风险的厌恶程度4.投资组合的种类11/8/2022162.投资
10、者的无差异曲线在不同的系统性风险中,投资者之所以选择不同的投资组合,是因为他们对风险的厌恶程度和对收益的偏好程度是不同的。对一个特定的投资者而言,任意给定一个证券组合,根据他对期望收益率和风险的偏好态度,按照期望收益率对风险补偿的要求,可以得到一系列满意程度相同的(无差异)证券组合。所有这些组合在均值方差(或标准差)坐标系中形成一条曲线,这条曲线就称为该投资者的一条无差异曲线无差异曲线。11/8/202217同一条无差异曲线上的组合满意程度相同;无差异曲线位置越高,该曲线上的组合的满意程度越高。无差异曲线满足下列特征:(1)无差异曲线向右上方倾斜。(2)无差异曲线是下凸的。(3)同一投资者有无
11、数条无差异曲线。(4)同一投资者在同一时间、同一时点的任何两条无差异曲线都不相交。11/8/202218二、假设投资者将一笔资金在给定时期(持有期)里进行投资,在期初,他购买一些证券,然后在期末全部卖出,那么在期初他将决定购买哪些证券,资金在这些证券上如何分配?q投资者的选择应该实现两个相互制约的目标预预期期收收益益率率最最大大化化和和收收益益率率不不确确定定性性(风风险险)的的最最小小化化之之间间的的某某种种平平衡衡。11/8/202219v马科维兹投资组合理论的假设为马科维兹投资组合理论的假设为:1.单期投资 单单期期投投资资是指投资者在期初投资,在期末获得回报。单期模型是对现实的一种近似
12、描述,如对零息债券、欧式期权等的投资。虽然许多问题不是单期模型,但作为一种简化,对单期模型的分析成为我们对多时期模型分析的基础。2.投资者事先知道投资收益率的概率分布,并且收益率满足正态分布的条件。11/8/2022203.资者的效用函数是二次的,即u(W)=a+bW+CW2。(注意:假设2和3成立可保证期望效用仅仅是财富期望和方差的函数)4.投资者以期望收益率(亦称收益率均值)来衡量未来实际收益率的总体水平,以收益率的方差(或标准差)来衡量收益率的不确定性(风险),因而投资者在决策中只关心投资的期望收益率和方差。5.投资者都是不知足的和厌恶风险的,遵循占优原则,即:在同一风险水平下,选择收益
13、率较高的证券;在同一收益率水平下,选择风险较低的证券。11/8/202221四、二次效用函数和市场的资产回报率服从正态分布M-V模型以资产回报的均值和方差作为选择对象,但是一般而言,资产回报和方差不能完全包含个体做选择时的所有个人期望效用函数信息。在什么条件下,期望效用分析和均值方差分析是一致的?11/8/202222假设假设2或假设或假设3之一成立可保证期望效之一成立可保证期望效用仅仅是财富期望和方差的函数用仅仅是财富期望和方差的函数假设个体的初始财富为W0,个体通过投资各种金融资产来最大化他的期末财富.设个体的VNM效用函数为u,在期末财富的期望值这点,对效用函数进行Taylor展开11/
14、8/202223上式说明个体偏好不仅依赖于财富的均值与方差,还依赖于财富的高阶矩。但是,如果财富的高阶矩为财富的高阶矩为0或者财富的高或者财富的高阶矩可用财富的期望和方差来表示阶矩可用财富的期望和方差来表示,则期望效用函数就仅仅是财富的期望和方差的函数。11/8/202224定理1如果则期望效用仅仅是财富的期望和方差的函数定理2如果期望财富服从正态分布,则期望效用函数仅仅是财富的期望和方差的函数。11/8/202225二次效用函数的假设和正态分布的假二次效用函数的假设和正态分布的假设不符合实际的消费者投资情况设不符合实际的消费者投资情况。因为二次函数具有递增的绝对风险厌恶和满足性两个性质。满足
15、性意味着在满足点以上,财富的增加使效用减少,递增的绝对风险厌恶意味着风险资产是劣质品。这与那些偏好更多的财富和将风险视为正常商品的投资者不符。此外,正态分布的中心轴对称与一般股票的有限责任不一致。11/8/202226注4均值-方差模型不是一个资产选择的一般性模型。它在金融理论中之所以扮演重要的角色,是因为它具有数理分析的简易性和丰富的实证检验。11/8/202227第二节第二节 证券收益与风险的度量及证券收益与风险的度量及证券组合的风险分散化效应证券组合的风险分散化效应一、一、价格与回报率价格与回报率二、二、期望收益率期望收益率三、三、方差方差四、协方差四、协方差五、相关系数五、相关系数六、
16、证券组合的方差六、证券组合的方差、协方差和风险的、协方差和风险的分散化分散化11/8/202228一个资产组合预期收益和风险的案例A公司的股票价值对糖的价格很敏感。多年以来,当加勒比海糖的产量下降时,糖的价格便猛涨,而A公司便会遭受巨大的损失,见下表糖生产的正常年份异常年份股市的牛市股市的熊市糖的生产危机概率0.50.30.2收益率%2510-2511/8/202229假定某投资者考虑下列几种可供选择的资产,一种是持有A公司的股票,一种是购买无风险资产,还有一种是持有糖凯恩公司的股票。现已知投资者持有0.5的A公司的股票,另外的0.5该进行如何选择。无风险资产的收益率为5%。糖凯恩公司的收益率
17、变化如下表11/8/202230糖凯恩公司的股票情况分析糖生产的正常年份异常年份股市的牛市股市的熊市糖的生产危机概率0.50.30.2收益率1-53511/8/202231资产组合预期收益标准差全部投资在于A公司股票10.5%18.90一般投资于国库券7.75%9.45%一半投资于糖凯恩公司股票8.25%4.8311/8/202232案例小结:案例小结:协方差对资产组合风险的影响:正的协协方差对资产组合风险的影响:正的协方差提高了资产组合的方差,而负的协方差提高了资产组合的方差,而负的协方差降低了资产组合的方差,它稳定资方差降低了资产组合的方差,它稳定资产组合的收益产组合的收益管理风险的办法:
18、套期保值管理风险的办法:套期保值购买和购买和现有资产负相关的资产,这种负相关使现有资产负相关的资产,这种负相关使得套期保值的资产具有降低风险的性质。得套期保值的资产具有降低风险的性质。在资产组合中加入无风险资产是一种简在资产组合中加入无风险资产是一种简单的风险管理策略,套期保值策略是取单的风险管理策略,套期保值策略是取代这种策略的强有力的方法。代这种策略的强有力的方法。11/8/202233作业:作业:假假设设以以上上案案例例中中糖糖凯凯恩恩公公司司的的可可能能收收益益有有上上述述变变化化,请请计计算算以以下下结果,并比较该结果与以上案例结果,由此做一个简单分析结果,并比较该结果与以上案例结果
19、,由此做一个简单分析1、如如果果Humanex资资产产组组合合仍仍是是一一半半贝贝斯斯特特股股票票,一一半半糖糖凯凯恩恩股股票,这个组合的期望收益和标准差是多少,票,这个组合的期望收益和标准差是多少,2、两个股票收益的协方差是多少、两个股票收益的协方差是多少3、用第四个概念的方式计算该组合的标准差是多少、用第四个概念的方式计算该组合的标准差是多少糖生产的正常年份异常年份股市的牛市股市的熊市糖的生产危机概率0.50.30.2收益率10-52011/8/202234一、价格与回报率对于单期投资而言,假设你在时间0(今天)以价格S0购买一种资产,在时间1(明天)卖出这种资产,得到收益S1。那么,你的
20、投资回报率为r=(S1-S0)/S0。对于证券组合而言,它的回报率可以用同样的方法计算:q 这里,W0记t=0时包含在组合中的证券的综合价格,W1是t=1时这些证券的综合价格,以及t=0与t=1之间收到的现金(或等价的现金)的综合值。11/8/202235我们注意到,投资者必须在t=0时刻对购买一个什么样的组合做出决策。在这样做的时候,对于大多数所考虑的各种组合,投资者不知道W1的值,因为他们不知道这些组合的回报率是多少。从而,根据马科维茨的理论,投资者应该讲这些组合中的任一组合的回报率视为统计中所称的一个随机变量;这样的变量可以通过它们的矩阵来描述,其中的两个是预期值(或均值)和标准差。11
21、/8/202236二、证券的二、证券的期望收益率期望收益率 第一个概念:第一个概念:单个证券的期望单个证券的期望值定义为值定义为:式中:式中:E(r)收益率期望值;收益率期望值;R(s)s状态下的收益率;状态下的收益率;Pr(s)r(s)状态的发生概状态的发生概率率11/8/202237 或者或者;E(r;E(rp p)=XE(r)=XE(r)第二个概念:第二个概念:一个证券组合的预期收益率:一个证券组合的预期收益率:是其所含证券的预期收益率的加权平均,以构成比例为权重.每一证券对组合的预期收益率的贡献依赖于它的预期收益率,以及它在组合初始价值中所占份额,而与其他一切无关。那么,一位仅仅希望预
22、期收益率最大的投资者将持有一种证券,这种证券是他认为预期收益率最大的证券。很少有投资者这样做,也很少有投资顾问会提供这样一个极端的建议。相反,投资者将分散化投资,即他们的组合将包含不止一种证券。这是因为分散化可以减少由标准差所测度的风险。11/8/202238三、方差一个证券预期收益的方差(第三个概念)一个证券的预期收益率描述了以概率为权数的平均收益率。但是这是不够的,我们还需要一个有用的风险测度,其应该以某种方式考虑各种可能的“坏”结果的概率以及“坏”结果的量值。取代测度大量不同可能结果的概率,风险测度将以某种方式估计实际结果与期望结果之间可能的偏离程度,方差方差就是这样一个测度,因为它估计
23、实际回报率与预期回报率之间的可能偏离。11/8/202239在证券投资中,一般认为投资收益的分布是对称的,即实际收益低于预期收益的可能性与实际收益高于预期收益的可能性是一样大的。实际发生的收益率与预期收益率的偏差越大,投资于该证券的风险也就越大,因此对单个证券的风险,通常用统计学中的方差或标准差来表示。11/8/202240沿用上面的表示方法,一个证券在该时期的方差是未来收益可能值对期望收益率的偏离(通常称为离差)的平方的加权平均,权数是相应的可能值的概率。记方差为2,即有方差越大风险越大投 资 者 选择 方 差 较小 的 证 券11/8/202241三、方差三、方差两个证券组合预期收益两个证
24、券组合预期收益的方差的方差(第四个概念)(第四个概念)方差分别为方差分别为 与与 的两个资产以的两个资产以w1与与w2的权重构的权重构成一个资产组合成一个资产组合 的方差为,的方差为,如果一个无风险资产与一个风险资产构成组合如果一个无风险资产与一个风险资产构成组合(第五个概念)(第五个概念),则该组合的标准差等于风险,则该组合的标准差等于风险资产的标准差乘以该资产的标准差乘以该组合投资于这部分风组合投资于这部分风险资产的比例。险资产的比例。11/8/202242四、协方差协方差(第六个概念)是两个随机变量相互关系的一种统计测度,即它测度两个随机变量,如证券A和B的收益率之间的互动性。特例(投资
25、在每种资产上的量相等):11/8/202243协方差为正值表明证券的回报率倾向于向同一方向变动例如,一个证券高于预期收益率的情形很可能伴随着另一个证券的高于预期收益率的情形。一个负的协方差则表明证券与另一个证券相背变动的倾向例如,一种证券的高于预期收益率的情形很可能伴随着另一个证券的低于预期收益率的情形。一个相对小的或者0值的协方差则表明两种证券之间只有很小的互动关系或没有任何互动关系。11/8/202244五、相关系数与协方差密切相关的另一个统计测量度是相相关系数关系数(第七个概念)(第七个概念)。事实上,两个随机变量间的协方差等于这两个随机变量之间的相关系数乘以它们各自的标准差的积。证券A
26、与B的相关系数为11/8/202245测量两种股票收益共同变动的趋势:Corr(RA,RB)或A,B-1.0+1.0完全正相关:+1.0完全负相关:-1.0完全负相关会使风险消失完全负相关不会减少风险在-1.0和+1.0之间的相关性可减少风险但不是全部11/8/202246六、方差多个证券组合的方差协方差矩阵(第八个概念)11/8/202247七、证券组合的方差和风险的证券组合的方差和风险的分散化分散化(一)证券组合风险分散的原因(一)证券组合风险分散的原因总结以上:证券组合的预期收益和方差是,总结以上:证券组合的预期收益和方差是,假定市场上有证券假定市场上有证券1,2,N证证券券i的的期期望
27、望收收益益率率为为Ei,方方差差为为 i,证证券券i与与证证券券j的的协协方方差差为为 ij(或或相相关关系系数数为为 ij)(i=1,2,n,j=1,2,m)投投资资者者的的投投资资组组合合为为:投投资资于于证证券券i的的比比例例为为wi,i=1,2,N,则,则11/8/202248那么该投资组合的期望收益率和方差为11/8/202249由上可知,证证券券组组合合的的方方差差不不仅仅取取决决于于单单个个证证券券的方差,而且还取决于各种证券间的协方差。的方差,而且还取决于各种证券间的协方差。随随着着组组合合种种证证券券数数目目的的增增加加,在在决决定定组组和和方方差差时时,协协方方差差的的作作
28、用用越越来来越越大大,而而方方差差的的作作用用越越来来越越小小。例如,在一个由30种证券组成的组合中,有30个方差和870个协方差。若一个组合进一步扩大到包括所有的证券,则协方差几乎就成了组合标准差的决定性因素。q风险的分散化原理被认为是现代金融学中唯一“白吃的午餐”。将多项有风险资产组合到一起,可以对冲掉部分风险而不降低平均的预期收益率,这是马科维茨的主要贡献。11/8/202250假定资产1在组合中的比重是w,则资产2的比重就是1-w。它们的预期收益率和收益率的方差分别记为E(r1)和E(r2),21和22,组合的预期收益率和收益率的方差则记为E(r)和2。那么,E(r)=wE(r1)+(
29、1-w)E(r2)2=w221+(1-w)222+2w(1-w)1212因为-1+1,所以有w1-(1-w)222w1+(1-w)2211/8/202251由上面右方的不等式可以看出,组合的标准差不会大于标准差的组合。事实上,只要1,就有,1);1);防御型股票防御型股票 (1)2种风险资产,允许卖空。假设期望收益率为ej,j=1,n.权重为wj.假设任一资产的收益率不能由其他资产的收益率线性表出,方差-协方矩阵V满足对称非奇异正定的11/8/202277定义:称一个证券组合是前沿证券组合(afrontierportfolio),如果它在所有等均值的证券组合中具有最小方差值。用数学语言描述为:
30、p是一个前沿证券组合当且仅当它的证券组合权重是二次规划问题P的解。11/8/202278求解结果:任何前沿资产组合都可用上式表示,另一方面,任何可用上式表示的资产组合都是前沿边界的资产组合.11/8/202279命题1g是具有0期望收益率的前沿边界资产组合相应的权重向量。g+h是期望收益率为1的前沿边界资产权重向量。命题2整个资产组合的前沿边界可以由g和g+h这两个前沿边界的资产组合生成。命题3由性质2得出:资产组合前沿边界可以由任意两个相异的前沿边界资产组合生成。(由此我们可以得到两基金分离定理,见第四节)11/8/202280三、有效前沿的均值与方差的关系均方空间的几何结构任何两个前沿边界
31、资产组合p和q的收益率协方差为:资产收益率的标准差与期望收益率之间的关系:图形11/8/202281什么是有效资产组合?期望收益率严格高于严格高于最小方差组合期望收益率A/C的前沿边界资产组合称为有效资产组合有效资产组合。什么是非有效资产组合?位于资产组合前沿边界,既不是有效资产组合,又不是最小方差资产组合的资产组合称为非有非有效资产组合效资产组合。对于每一个非有效资产组合,存在一个具有相相同方差但更高期望收益率同方差但更高期望收益率的有效资产组合。11/8/202282性质1最小方差组合mvp,与任何资产组合(不仅仅是前沿边界上的)收益率的协方差总是等于最小方差资产组合的收益率的方差,即性质
32、2任何前沿边界组合的线性组合仍在前沿边界上。有效资产组合的任何凸组合仍是有效组合,有效组合的集合因此是一个凸集。11/8/202283性质3资产组合边界的一个重要性质是,对于前沿边界上的任何资产p,除了最小方差资产组合,存在唯一的前沿边界资产组合,用zc(p)表示,与p的协方差为0。性质4最小方差资产组合与任何其他前沿边界资产组合的协方差为1/C.从而不存在与最小方差资产组合具有0协方差的前沿边界资产组合11/8/202284性质5如果p是有效资产组合,则这样的zc(p)是一个非有效的资产组合。11/8/202285zc(p)位置的确定。见图在标准差-期望收益率空间中,经过与任何前沿边界资产组
33、合(除最小方差资产组合)相对应的点,与资产组合前沿边界相切的直线在期望收益率坐标轴上的截矩是。相应的,在方差-期望收益率空间中,连接任何前沿边界资产组合p和mvp的直线在期望收益率坐标轴上的截矩等于11/8/202286四、最优投资组合的选择确定了有效集的形状之后,投资者就可以根据自己的无差异曲线群选择能使自己投资效用最大化的最优投资组合了。这个组合位于无差异曲线与有效集的相切点O,如图所示:收收益益风险风险BN11/8/202287O点所代表的组合就是最优投资组合最优投资组合。有效集向上凸的特性和无差异曲线向下凸的特性就额定了有效集和无差异区县的相切点只有一个,也就是说最优投资组合是唯一的最
34、优投资组合是唯一的。对投资者而言,有效集是客观存在的,它是由证券市场线决定的。而无差异曲线则是主观的,它是由自己的风险收益偏好决定的。由第一节的分析可知,厌恶风险程度越高的投资者,其无差异曲线的斜率越陡,因此其最优投资组合越接近N。厌恶风险程度越低的投资者,其无差异曲线的斜率越小,因此其最优投资组合越接近B点。11/8/202288第四节第四节 两基金分离定理两基金分离定理投投资组合构建的指数策略资组合构建的指数策略一、两基金分离定理的含义二、两基金分离定理的金融含义11/8/202289一、Tobin的二基金分离定理由于Markowitz问题是线性问题,因而两个有不同收益的解的线性组合就可生
35、成整个组合前沿。这两个特殊的组合可以看成“基金”。这个结果称为二基金分二基金分离定理。离定理。它是Tobin(1958)首先提出的。James Tobin,(1918-)1981年诺贝尔经济学奖获得者11/8/202290两基金分离定理(两基金分离定理(Two-Fund Two-Fund SeparationSeparation)的含义v在所有风险资产组合的有效组合边界上,任意两个分离的点都代表两个分离的有效投资组合,而有效组合边界上任意其它的点所代表的有效投资组合,都可以由这两个分离的点所代表的有效组合的线性组合生成。11/8/202291二、两基金分离定理的金融含义二、两基金分离定理的金融
36、含义共同基金是专门从事分散化投资的金融中介机构。共同基金一方面发行小面额的受益凭证作为自己的负债,另一方面则把筹集到的大笔资金进行分散化投资,形成自己的投资组合。如果有两家不同的共同基金,它们都投资于有风险资产,而且都经营良好,经营良好意味着它们的收益/风险关系都能达到有效组合边界。11/8/202292v两基金分离定理告诉我们,任何别的投资于有风险资产的共同基金,如果经营良好(即能够达到有效组合边界)的话,其投资组合一定与原来那两个共同基金(经营良好)的某一线性组合等同。只要能找到这样两家不同的经营良好的共同基金,把自己的资金按一定的比例投资于这两家基金,就可以与投资于其他经营水平高的共同基
37、金获得完全一样的效果。这一结论对投资策略的制定无疑有重要的意义。11/8/202293总结总结马科维茨对现代金融投资理论的贡献主要在以下几方面的命题1.传统上人们将预期收益最大化看作是投资组合的目标,实际上,分散投资行为与此目标相矛盾,但分散投资行为却与均值方差的目标函数一致。2.提出了与现实更为接近的目标函数均值方差的目标函数:MaxUE(r),解决了过去金融经济学以预期收益最大化作为证券组合目标与实际中的分散投资者投资行为相矛盾的问题。11/8/2022943.证明了上述目标函数与具有二次效用函数的投资者追求预期效用最大化的目标一致。4.提出了单一证券的风险取决于它与其他证券的相关性的论点
38、。投资组合的方差是证券方差和对偶协方差的函数,因此,单一证券对于投资组合风险的贡献取决于它与其它证券的相关性。5.理性的投资者将选择并持有有效投资组合,即哪些在给定的风险水平下的期望回报最大化的投资组合,这就是有效集;或那些在给定期望回报率水平上的使风险最小化的投资组合这是最小方差集。6.二次规划可用于计算有效投资组合集。11/8/202295缺憾缺憾:1.计算量太大。2.排除了消费对投资的影响,假定期初投资额是一个固定值。这虽然对单阶段情况下影响不大,但不适用动态多阶段的情况。3.用方差作为资产风险的度量这只适用于对称分布的资产收益,不具备一般性。4.均值方差理论不能确定具体投资者的最优组合,投资者还需根据风险偏好从有效集中选择最优组合。11/8/202296