《概率论与-数理统计习题2及答案~.doc》由会员分享,可在线阅读,更多相关《概率论与-数理统计习题2及答案~.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、|习题二3.设在 15 只同类型零件中有 2 只为次品,在其中取 3 次,每次任取 1 只,作不放回抽样,以 X 表示取出的次品个数,求:(1) X 的分布律;(2) X 的分布函数并作图;(3).133,1,12222PXPX【解】 315231350,.C().().CPX故 X 的分布律为X 0 1 2P 235235135(2) 当 xa 时,F (x )=1即分布函数|0,0()1,xFxaa18.设随机变量 X 在2,5 上服从均匀分布 .现对 X 进行三次独立观测,求至少有两次的观测值大于 3 的概率.【解】XU2,5 ,即 1,25()30xfx其 他53()dPX故所求概率为
2、 233120C()()7p19.设顾客在某银行的窗口等待服务的时间 X(以分钟计)服从指数分布 .某顾客在窗1()5E口等待服务,若超过 10 分钟他就离开.他一个月要到银行 5 次,以 Y 表示一个月内他未等到服务而离开窗口的次数,试写出 Y 的分布律,并求 PY1.【解】依题意知 ,即其密度函数为1()5XE51e,0()xf该顾客未等到服务而离开的概率为 2510()edxPX,即其分布律为2(5e)Yb225525()C(e),1,3410(e)0.67kkYP20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间 X服从 N(40,10 2) ;第二条路程
3、较长,但阻塞少,所需时间 X 服从 N(50,4 2).(1) 若动身时离火车开车只有 1 小时,问应走哪条路能乘上火车的把握大些?(2) 又若离火车开车时间只有 45 分钟,问应走哪条路赶上火车把握大些?【解】 (1) 若走第一条路,XN (40,10 2) ,则406(6) (2)0.971xPX|若走第二条路,XN(50,4 2) ,则+506(60) (2.5)09384XP故走第二条路乘上火车的把握大些.(2) 若 XN(40,10 2) ,则 05(45) (0.5)6911X若 XN(50,4 2) ,则 4() (.2)XP1(.25)0.16故走第一条路乘上火车的把握大些.21.设 XN(3,2 2) ,(1) 求 P20;(2) f(x)= .,0,212他b试确定常数 a,b,并求其分布函数 F(x).【解】 (1) 由 知()dfx| 02ed2edxaa故 即密度函数为 e,2()0xf当 x0 时 1()()de2xxxFf当 x0 时 00dx1e2x