《武汉机器视觉设备项目投资计划书.docx》由会员分享,可在线阅读,更多相关《武汉机器视觉设备项目投资计划书.docx(124页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/武汉机器视觉设备项目投资计划书武汉机器视觉设备项目投资计划书xxx(集团)有限公司目录第一章 项目绪论8一、 项目概述8二、 项目提出的理由9三、 项目总投资及资金构成10四、 资金筹措方案10五、 项目预期经济效益规划目标11六、 项目建设进度规划11七、 环境影响11八、 报告编制依据和原则12九、 研究范围13十、 研究结论13十一、 主要经济指标一览表14主要经济指标一览表14第二章 市场预测16一、 机器视觉行业发展概况16二、 全球发展现状17三、 机器视觉行业在发展情况18第三章 背景、必要性分析21一、 行业发展历程21二、 机器视觉行业新技术未来发展趋势23三、 国
2、内发展现状26四、 构建现代产业体系,提高经济质量效益和核心竞争力31五、 开拓市场空间,构建新发展格局重要枢纽33六、 项目实施的必要性36第四章 产品方案38一、 建设规模及主要建设内容38二、 产品规划方案及生产纲领38产品规划方案一览表39第五章 建筑工程说明40一、 项目工程设计总体要求40二、 建设方案40三、 建筑工程建设指标41建筑工程投资一览表41第六章 法人治理结构43一、 股东权利及义务43二、 董事45三、 高级管理人员50四、 监事52第七章 运营管理模式55一、 公司经营宗旨55二、 公司的目标、主要职责55三、 各部门职责及权限56四、 财务会计制度59第八章 发
3、展规划分析65一、 公司发展规划65二、 保障措施66第九章 劳动安全68一、 编制依据68二、 防范措施69三、 预期效果评价75第十章 进度规划方案76一、 项目进度安排76项目实施进度计划一览表76二、 项目实施保障措施77第十一章 节能方案78一、 项目节能概述78二、 能源消费种类和数量分析79能耗分析一览表80三、 项目节能措施80四、 节能综合评价81第十二章 原辅材料供应、成品管理82一、 项目建设期原辅材料供应情况82二、 项目运营期原辅材料供应及质量管理82第十三章 投资估算84一、 投资估算的依据和说明84二、 建设投资估算85建设投资估算表87三、 建设期利息87建设期
4、利息估算表87四、 流动资金88流动资金估算表89五、 总投资90总投资及构成一览表90六、 资金筹措与投资计划91项目投资计划与资金筹措一览表91第十四章 项目经济效益分析93一、 基本假设及基础参数选取93二、 经济评价财务测算93营业收入、税金及附加和增值税估算表93综合总成本费用估算表95利润及利润分配表97三、 项目盈利能力分析97项目投资现金流量表99四、 财务生存能力分析100五、 偿债能力分析100借款还本付息计划表102六、 经济评价结论102第十五章 项目招标及投标分析103一、 项目招标依据103二、 项目招标范围103三、 招标要求104四、 招标组织方式106五、 招
5、标信息发布106第十六章 总结分析108第十七章 补充表格110主要经济指标一览表110建设投资估算表111建设期利息估算表112固定资产投资估算表113流动资金估算表113总投资及构成一览表114项目投资计划与资金筹措一览表115营业收入、税金及附加和增值税估算表116综合总成本费用估算表117利润及利润分配表118项目投资现金流量表119借款还本付息计划表120报告说明深度学习方法作为传统神经网络的拓展,近年来在语音、图像、自然语言等的语义认知问题上取得巨大的进展,为解决机器视觉大数据的表示和理解问题提供了通用的框架。根据谨慎财务估算,项目总投资12069.21万元,其中:建设投资1004
6、6.90万元,占项目总投资的83.24%;建设期利息134.40万元,占项目总投资的1.11%;流动资金1887.91万元,占项目总投资的15.64%。项目正常运营每年营业收入20700.00万元,综合总成本费用16767.46万元,净利润2873.86万元,财务内部收益率18.73%,财务净现值4875.47万元,全部投资回收期5.79年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。本期项目是基于公开的产业信息、市场分析、技
7、术方案等信息,并依托行业分析模型而进行的模板化设计,其数据参数符合行业基本情况。本报告仅作为投资参考或作为学习参考模板用途。第一章 项目绪论一、 项目概述(一)项目基本情况1、项目名称:武汉机器视觉设备项目2、承办单位名称:xxx(集团)有限公司3、项目性质:扩建4、项目建设地点:xx(以最终选址方案为准)5、项目联系人:胡xx(二)主办单位基本情况公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界,对服务区域经济与社会发展做出了突出贡献。 公司满怀信心,发扬“正直、诚信、务
8、实、创新”的企业精神和“追求卓越,回报社会” 的企业宗旨,以优良的产品服务、可靠的质量、一流的服务为客户提供更多更好的优质产品及服务。公司坚持提升企业素质,即“企业管理水平进一步提高,人力资源结构进一步优化,人员素质进一步提升,安全生产意识和社会责任意识进一步增强,诚信经营水平进一步提高”,培育一批具有工匠精神的高素质企业员工,企业品牌影响力不断提升。未来,在保持健康、稳定、快速、持续发展的同时,公司以“和谐发展”为目标,践行社会责任,秉承“责任、公平、开放、求实”的企业责任,服务全国。(三)项目建设选址及用地规模本期项目选址位于xx(以最终选址方案为准),占地面积约31.00亩。项目拟定建设
9、区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。(四)产品规划方案根据项目建设规划,达产年产品规划设计方案为:xx套机器视觉设备/年。二、 项目提出的理由从机器视觉来看,机器视觉产品需求与制造业的规模及智能程度发展水平密切相关。机器视觉是实现工业自动化和智能化的必要手段,相当于人类视觉在机器上的延伸。它具备高度自动化、高效率、高精度和适应较差环境等优点,具有四大优势。第一,智能识别,能够从大量信息中找到关键特征,识别准确度和可靠度极高;第二,智能测量,测量是工业制造的基础,要求测量的标准与细节精度较为严格;第三,智能检测,在测量的基础上,能够综合分析
10、判断多样化的信息及指标,做出基于复杂逻辑的智能化判断;第四,智能互联,图像的海量数据在多节点采集互联,同时将人员、设备、生产物资、环境、工艺等数据相互联系,进而衍生出深度学习、智能优化、智能预测等创新能力。因此,在智能制造过程中,机器视觉主要用计算机来模拟人的视觉功能,把客观事物的图像信息提取、处理并理解,最终用于实际检测、测量和控制。随着制造业智能发展的快速增长,市场对于机器视觉的需求也将逐渐增多。相应的,机器视觉行业规模将受益于快速增长的智能制造产业的发展而进一步增长。根据中商产业研究院数据显示,2019年我国智能制造装备产值规模达17,776亿元,2020年规模达20,900亿元。202
11、1年我国智能制造装备产值规模将达22,650亿元。三、 项目总投资及资金构成本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资12069.21万元,其中:建设投资10046.90万元,占项目总投资的83.24%;建设期利息134.40万元,占项目总投资的1.11%;流动资金1887.91万元,占项目总投资的15.64%。四、 资金筹措方案(一)项目资本金筹措方案项目总投资12069.21万元,根据资金筹措方案,xxx(集团)有限公司计划自筹资金(资本金)6583.55万元。(二)申请银行借款方案根据谨慎财务测算,本期工程项目申请银行借款总额5485.66万元。五、
12、项目预期经济效益规划目标1、项目达产年预期营业收入(SP):20700.00万元。2、年综合总成本费用(TC):16767.46万元。3、项目达产年净利润(NP):2873.86万元。4、财务内部收益率(FIRR):18.73%。5、全部投资回收期(Pt):5.79年(含建设期12个月)。6、达产年盈亏平衡点(BEP):7956.84万元(产值)。六、 项目建设进度规划项目计划从可行性研究报告的编制到工程竣工验收、投产运营共需12个月的时间。七、 环境影响本项目选址合理,符合相关规划和产业政策,通过采取有效的污染防治措施,污染物可做到达标排放,对周边环境的影响在可承受范围内,因此,在切实落实评
13、价提出的污染控制措施和严格执行“三同时”制度的基础上,从环境影响的角度,本项目的建设是可行的。八、 报告编制依据和原则(一)编制依据1、国家建设方针,政策和长远规划;2、项目建议书或项目建设单位规划方案;3、可靠的自然,地理,气候,社会,经济等基础资料;4、其他必要资料。(二)编制原则1、政策符合性原则:报告的内容应符合国家产业政策、技术政策和行业规划。2、循环经济原则:树立和落实科学发展观、构建节约型社会。以当地的资源优势为基础,通过对本项目的工艺技术方案、产品方案、建设规模进行合理规划,提高资源利用率,减少生产过程的资源和能源消耗延长生产技术链,减少生产过程的污染排放,走出一条有市场、科技
14、含量高、经济效益好、资源消耗低、环境污染少、资源优势得到充分发挥的新型工业化路子,实现可持续发展。3、工艺先进性原则:按照“工艺先进、技术成熟、装置可靠、经济运行合理”的原则,积极应用当今的各项先进工艺技术、环境技术和安全技术,能耗低、三废排放少、产品质量好、经济效益明显。4、提高劳动生产率原则:近一步提高信息化水平,切实达到提高产品的质量、降低成本、减轻工人劳动强度、降低工厂定员、保证安全生产、提高劳动生产率的目的。5、产品差异化原则:认真分析市场需求、了解市场的区域性差别、针对产品的差异化要求、区异化的特点,来设计不同品种、不同的规格、不同质量的产品以满足不同用户的不同要求,以此来扩大市场
15、占有率,寻求经济效益最大化,提高企业在国内外的知名度。九、 研究范围本报告对项目建设的背景及概况、市场需求预测和建设的必要性、建设条件、工程技术方案、项目的组织管理和劳动定员、项目实施计划、环境保护与消防安全、项目招投标方案、投资估算与资金筹措、效益评价等方面进行综合研究和分析,为有关部门对工程项目决策和建设提供可靠和准确的依据。十、 研究结论综上所述,该项目属于国家鼓励支持的项目,项目的经济和社会效益客观,项目的投产将改善优化当地产业结构,实现高质量发展的目标。十一、 主要经济指标一览表主要经济指标一览表序号项目单位指标备注1占地面积20667.00约31.00亩1.1总建筑面积34583.
16、801.2基底面积13020.211.3投资强度万元/亩309.072总投资万元12069.212.1建设投资万元10046.902.1.1工程费用万元8664.592.1.2其他费用万元1097.912.1.3预备费万元284.402.2建设期利息万元134.402.3流动资金万元1887.913资金筹措万元12069.213.1自筹资金万元6583.553.2银行贷款万元5485.664营业收入万元20700.00正常运营年份5总成本费用万元16767.466利润总额万元3831.827净利润万元2873.868所得税万元957.969增值税万元839.3510税金及附加万元100.721
17、1纳税总额万元1898.0312工业增加值万元6703.7913盈亏平衡点万元7956.84产值14回收期年5.7915内部收益率18.73%所得税后16财务净现值万元4875.47所得税后第二章 市场预测一、 机器视觉行业发展概况机器视觉系统是集光学、机械、电子、计算、软件等技术为一体的工业应用系统,它通过对电磁辐射的时空模式进行探测及感知,可以自动获取一幅或多幅目标物体图像,对所获取图像的各种特征量进行处理、分析和测量,根据测量结果做出定性分析和定量解释,从而得到有关目标物体的某种认识并作出相应决策,执行可直接创造经济价值或社会价值的功能活动。我国机器视觉行业属于技术更新较快、受市场主导型
18、产业,行业内企业竞争程度较高。机器视觉产业链中相关企业主要分为三类:上游的机器视觉部件提供商、中游的相关装备制造商及机器视觉系统商、下游的机器视觉产品的终端应用商。机器视觉行业内上游企业专注于与机器视觉相关的软硬部件的生产与研发。其中,硬件包括光源、镜头、工业相机、图像采集卡以及控制器及配件等;软件包括图像处理软件以及底层算法平台等构成的机器视觉软件及算法。根据开源证券工业机器视觉之“眼”机器视觉报告,在目前的整个机器视觉系统成本构成上,核心零部件大约占比45%、软件开发大约占比35%、组装集成大约占比15%、维护服务大约占比5%,核心零部件和软件开发是产业链中绝对的核心环节。机器视觉行业内中
19、游企业为机器视觉装备制造商与机器视觉系统商。其中,机器视觉系统包含独立完整的成像单元(光源、镜头、相机)和相应的算法软件,集图像采集、处理与通信功能于一身,可以灵活的进行配置和控制。而机器视觉装备则以机器视觉系统的感知能力和分析决策能力为核心,在系统的基础上赋予了设备自动化和智能化的功能,将其应用在下游实际的生产运作之中,可实现多种功能。机器视觉行业下游主要为机器视觉设备的终端应用场景。具体来说,由于机器视觉具有定位、识别、测量、检测四大功能,通常下游应用企业会将相关设备配置应用在产品生产制造过程中的检测、筛查等重要环节,从而达到提高良品率、提升生产效率、减少对人工的依赖以及节约成本等目的。因
20、此,工业相机、图像采集卡作为机器视觉设备的核心部件之一,将被广泛应用于生产生活的各个领域。此外,未来随着工业智能制造的不断升级,机器视觉设备在各个行业的渗透率将进一步提高,相关核心部件的市场需求有望迎来新一轮的爆发增长。二、 全球发展现状2020年全球机器视觉市场规模为96亿美元,在2015-2020年期间实现了11.4%的年均复合增长率。未来,预计2021-2025年全球机器视觉市场将以6.3%的年复合增长率进行增长,2025年全球机器视觉市场将达到130亿美元的规模,行业整体将进入稳定发展的新时期。其中,工业相机和图像采集卡作为机器视觉系统的核心部件,相关细分市场发展深受机器视觉行业影响,
21、将有望成为行业内最具发展前景的细分市场之一。在工业相机领域,据GIR(GlobalInfoResearch)机构按收入统计调研数据知,2021年全球工业相机收入大约18.11亿美元,预计2028年将达到29.05亿美元,在2022-2028年期间,全球工业相机市场规模将以年均7.0%的复合增长率增长;在图像采集卡领域,据QYResearch、东莞证券研究所数据,2020年全球图像采集卡市场规模为3.31亿美元,预计2025年将达到4.23亿美元,年均复合增长率将达到5.03%。从区域分布来看,根据前瞻产业研究院、申港证券研究所数据,2019年全球机器视觉市场份额占比最大的为欧洲地区,占比为36
22、.4%;其次是北美地区,占比29.3%;随着我国在机器视觉行业的快速发展,以中国为代表的亚太地区正迎头赶上,份额占比已达到25.3%。三、 机器视觉行业在发展情况1、机器视觉核心部件的关键性能指标不断升级机器视觉核心部件的关键性能指标包括:工业相机的成像分辨率、数据位深度、采样速率、信噪比、图像传输速度等;图像采集卡的数据传输速度、图像处理能力、图像传输的稳定性和可靠性等。工业相机和图像采集卡的关键性能指标直接影响机器视觉系统的成像质量和工作效率。近年来机器视觉的重点应用领域如3C电子检测、锂电池检测、光伏检测、半导体检测等迅猛发展,新型应用场景不断涌现,机器视觉产业也随之持续升级,需求端对机
23、器视觉核心部件的性能要求不断提高,推动工业相机和图像采集卡的技术不断进步与升级。得益于半导体技术的高速发展,图像传感器的分辨率不断提升,信号质量逐步提升,采样速度越来越快。目前,线扫描相机图像传感器输出分辨率已经达到了24K,面扫描相机分辨率已经发展2亿像素以上,数据位宽也从最初的8bit逐步发展到10bit、12bit乃至16bit。与此同时,前端嵌入式运算能力的进一步加强,使得更多的复杂运算可以在相机端实现,例如借助像素位移技术和超分辨率算法,可以实现4倍甚至更高分辨率的图像合成。此外,传感器材料学和半导体新制程的进步,使得工业相机逐步开始从可见光向紫外、红外等多波段扩展,通过光谱信息和图
24、像信息的结合,可以从更多维度检测分析产品,不断拓宽机器视觉在各种工业领域应用场景。同样的,得益于半导体技术的进步,在图像采集卡方面,数据传输速度、传输带宽不断提高,图像数据的预处理能力不断增强。随着高速串行总线技术的成熟,多路串行数据传输开始逐步在图像采集卡中导入和推广。随着数据中心等行业的发展,先进工艺逐步提升大规模可编程逻辑处理器的各项性能指标,使得在图像采集卡中进行图像预处理具备可行性,目前业界领先的图像采集卡供应商开始逐步开发可重构的图像处理算法,在计算机中构建异构化的图像处理平台,将原先完全由CPU承担的图像处理任务进行分解,从而大大地提升图像处理效率和能力。图像采集卡在这些方面的进
25、步,大大提升了机器视觉系统处理复杂任务的能力,为进一步的广泛应用奠定了基础。2、技术的进步使机器视觉新型应用领域不断涌现机器视觉部件硬件性能的不断升级与软件技术不断进步,促进了机器视觉产品的持续更新迭代,使机器视觉在传统应用领域不断深入,且新型应用领域不断涌现。例如,近年来3D工业相机在国内外开始投入工业应用,执行多样而复杂的检测、定位、测量和识别任务,通过对表面形貌的获取,在二维图像信息的基础上,进一步丰富了对目标物特征的采集,为复杂工业检测提供了更多的可能性;多光谱相机也以其独特的优势在半导体晶圆检测和光伏硅电池检测中逐步推广。与AI、5G等智能和物联新技术的结合可拓展机器视觉应用的广度,
26、例如全息感知技术在智慧交通建设中通过流量监测、智能交通信号灯等应用提高平均车速和事故处理效率;在智慧工厂应用中以5G云平台与机器视觉硬件结合,可实现产线柔性化部署、算法快速自优化,为其他应用场景如智慧水务、智慧园区、智慧物流提供重要参考。第三章 背景、必要性分析一、 行业发展历程从全球范围来看,机器视觉行业起源于20世纪70年代,发展至今,行业已经历五个发展阶段。第一阶段,1969-1979年,在成像传感器诞生的驱动下,机器视觉进入产业萌芽期。1969年美国贝尔实验室成功研制出CCD传感器,可以直接把图像转换为数字信号并存储到电脑中参与计算和分析,从而为机器视觉的产生奠定了基础;第二阶段,19
27、80-1989年,在需求应用的驱动下,机器视觉进入起步期。机器视觉概念首次在产业界被提及,加拿大的TeledyneDalsa、英国的E2V以及美国的Cognex(康耐视)等相关知名企业诞生;第三阶段,1990-1999年,随着需求端应用的不断发展,机器视觉行业进入成长波动期。其中,1990年半导体产业的发展为机器视觉行业提供了较大的发展潜力,但受限于成像技术和算法算力尚不成熟,无法有效满足行业的应用需求,难以全面推广;第四阶段,2000-2009年,在应用和算力的共同驱动下,机器视觉进入产业发展早期。在CPU算力大幅提升,FPD平板显示制造、PCB检测和汽车制造等行业陆续对机器视觉技术应用表现
28、出强烈需求的双重因素影响下,产业需求和技术进步共同促进了机器视觉行业的快速发展与繁荣。我国机器视觉产业也在这个阶段加入了全球阵营;第五阶段,2010-2020年,AI算法的兴起推动机器视觉进入发展中期。2016年以来AI迅速发展,随着人工智能赋能的机器视觉开始在智能制造应用中的加速普及,相关产业得到了进一步发展。相较而言,我国机器视觉行业虽起步较晚,但发展速度较快,行业已经历三个发展阶段。第一阶段,1995-1999年,随着对国外设备与技术的引进与吸收,我国机器视觉行业进入了萌芽期。但由于算法、算力及成像技术尚不成熟,我国仅有航空航天、军工及高端科研等核心机构和行业开始出现应用,部分相关企业作
29、为国外代理会提供机器视觉器件及技术服务;第二阶段,2000-2008年,在应用与算法的双驱动下,我国机器视觉行业迈入了起步期。随着算力强度的进一步提升,且国内如人民币印钞质量检测、邮政分拣等行业对机器视觉提出强烈的应用需求,我国开始出现一些专业的机器视觉企业;第三阶段,2009-2020年,我国机器视觉产业逐步进入高速发展期。特别指出的是,2010年后,以苹果为代表的手机产业的飞速发展给整个3C电子制造业带来巨大的变革。一方面,随着3C电子制造产业进入高精度时代,迫切需要用机器替代人工来保障产品加工精度和质量的一致性;另一方面,3C电子由于更新较快,应用场景较为丰富,大大扩展了机器视觉的应用。
30、受到这两方面因素的共同影响,加速促进了我国机器视觉产业的发展,我国陆续涌现出近百家机器视觉企业。此外,2016年以来AI算法的发展,再次为我国机器视觉行业注入新一轮的发展活力。整体来看,从2010年开始的近十年,我国机器视觉产业发展一直保持20%-30%的增速。二、 机器视觉行业新技术未来发展趋势1、高精度高分辨率光学成像技术高精度光学成像是机器视觉行业始终追求的技术发展目标。高精度光学成像需要光源、镜头、相机、图像采集卡等各部分的精密配合,要求新型光源、更全面的波长覆盖和创新的光源布局等光源技术,以及提供更大靶面和更小像元的新型镜头和相机产品。高精度光学成像技术增强了机器视觉的图像信息获取能
31、力,通过多样化光学成像技术,获取到传统成像中难以获取的图像信息,并通过高速、高灵敏度的图像采集技术深度挖掘图像中隐含的内部信息,满足更高分辨率、更多维度、更大空间带宽积的光电成像需求。2、3D视觉技术目前机器视觉主要采用的2D机器视觉技术仅能获取固定平面内的形状及纹理信息等二维图像,这主要基于物体在灰度或者彩色图像中对比度的特征提供处理分析结果。2D机器视觉技术的缺点包括无法提供物体高度、平面度、表面角度、体积等三维信息;容易受光照条件变化的影响;对物体的运动比较敏感等。随着智能制造变革来临,面对复杂的物件辨识和尺寸量度任务,以及人机互动所需要的复杂互动,2D视觉在精度和距离测量方面均出现技术
32、限制。3D机器视觉技术相对于2D技术提供了更丰富的被摄目标信息,可以识别物体的深度、形貌、位姿等3D信息。3D技术提供了丰富的三维信息,使机器能够感知物理环境的变化,并相应地进行调整,从而在应用中提高了灵活性和实用性,扩大了机器视觉的应用场景。3、多光谱成像技术多光谱技术,利用像元级的镀膜技术实现对不同波长光谱信号的采集,从而得到高分辨率的多/高光谱的图像信号,大大简化了视觉系统的光学部件复杂性。光谱技术推动机器视觉实现目标的多种特征分析。随着机器视觉的快速发展和普及,机器视觉产品已经广泛应用于3C、锂电池、半导体、PCB、新型显示、汽车零配件、光伏、物流、医药、包装印刷、轨道交通等众多产业中
33、。各行业样本的复杂性要求机器视觉从可见光光谱到非可见光光谱、从单一光谱到多光谱,不仅需要实现目标的外观检测,也需要实现目标的材料成分、颜色、温度等复杂特征的分析。多光谱技术利用光的衍射和折射特性,通过光栅、棱镜等分光元件,获取到不同谱段的有效信号,实现目标高维信息参量获取,并通过相关分析算法将谱域信号与测量需求建立联系,如物质成分、温度、三维面型等,进而满足复杂多样化的测量需求。4、高集成智能相机技术在工业领域中,随着机器视觉的应用逐渐深入,自动化程度越来越高,机器视觉核心部件的智能化程度不断提升,集成更多边缘智能已经成为工业相机未来发展的主要趋势之一。智能工业相机是一个兼具图像采集、图像处理
34、和信息传递功能的小型机器视觉检测系统,是一种嵌入式计算机视觉检测系统,提供了具有多功能、模块化、高可靠性、易于实现的机器视觉解决方案。它将图像传感器、处理模块、通讯模块和其他外设集成到一个单一的相机内,由于这种一体化的设计,可降低系统的复杂度,并提高可靠性,同时系统尺寸大大缩小,拓宽了机器视觉的应用领域。智能工业相机可以在特定的应用环境中实现图像处理并利用内嵌的人工智能算法做出逻辑判断,为自动化场景提供无需人工干预的智能方案,是工业自动化领域集成边缘智能的重要手段。通过对智能芯片和算法的集成,智能工业相机具有强大的软硬件功能,未来将在各个工业领域中发挥重要作用,例如可应用于高端工业检查、产品分
35、类、质量检测、视觉传感器网络、条码阅读、入侵检测和交通监控等工业过程。深度学习方法作为传统神经网络的拓展,近年来在语音、图像、自然语言等的语义认知问题上取得巨大的进展,为解决机器视觉大数据的表示和理解问题提供了通用的框架。随着机器视觉在不同行业应用的扩展,传统算法的机器视觉在针对缺陷类型复杂化、细微化、背景噪声复杂等外观检测以及分选定级应用场景时,呈现通用性低、不易复制、对使用人员要求高等缺点。基于深度学习的机器视觉采用更复杂的规则实现精细的量化评估,凭借AI深度学习更强的特征提取能力为机器视觉提供更多应用可能,使得机器视觉能够解决更加复杂背景下的定位与识别、工件的缺陷检测和分割、畸变物体的分
36、类、难辨字符与文本的读取等复杂的工作任务。随着工业机器视觉的检测对象越来越复杂,应用越来越广泛,机器视觉应用逐渐从传统机器视觉向基于深度学习的机器视觉过渡,机器视觉的应用领域也会因深度学习技术而得到极大扩展。此外,基于深度学习方法的机器视觉系统对机器视觉核心部件的软硬件水平提出了更高要求,与深度学习算法相匹配的工业相机和图像采集卡等机器视觉核心部件的技术发展将成为机器视觉未来发展趋势之一。三、 国内发展现状根据机器视觉产业联盟(CMVU)在2021年度统计153家企业的样本调查数据,2021年我国机器视觉行业销售额为163.8亿元,较2020年增长34.5%。同时,受益于国家对智能制造产业的政
37、策支持、我国制造业总体规模的进一步扩大以及下游应用行业的不断拓展等因素的影响,2019-2021年期间,我国机器视觉行业的年均复合增长率达到了22.9%,市场规模持续扩大。未来三年,考虑到宏观经济的复苏回暖、国产替代浪潮兴起、行业技术的创新升级以及下游应用领域的进一步延伸等因素,预计我国机器视觉行业发展将进入快车道,行业规模将从2022年的215.1亿元增长至2024年的403.6亿元,实现年均37.0%的复合增长。从企业数量来看,虽然我国机器视觉行业起步较晚,但近年来,随着我国陆续出台一系列相关政策对智能制造、机器视觉行业的鼓励和支持,进入相关领域的企业数量不断增多。根据前瞻产业研究院数据,
38、在2017-2020年期间,每年新增企业数量均超过600家。其中,2019年新增企业数量达到峰值819家,2020年受新冠疫情的影响,行业内新增企业数量稍有回落,但仍达到637家。目前,我国各种类型的机器视觉企业已累计超过4,000家。此外,据机器视觉产业联盟(CMVU)的调查数据显示,进入中国的国际机器视觉品牌已超过200家。 从产品类型来看,根据机器视觉产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销
39、售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样本企业调查数据统计,2019-2021年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的市场。其中,2D相机(面阵相机)的销售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机
40、产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021年我国图像采集卡的销售额占比为4.6%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销售额8.03亿元),图像采集卡的销售额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为153家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。从产品类型来看,根据机器视觉
41、产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样本企业调查数据统计,2019-2021年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的市场。其中,2D相机(面阵相机)的销
42、售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021年我国图像采集卡的销售额占比为4.6%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销售额8.03亿元),图像采集卡的销售
43、额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为153家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。从产品类型来看,根据机器视觉产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样本企业调查数据统计,2019-202
44、1年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的市场。其中,2D相机(面阵相机)的销售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021年我国图像采集卡的销售额占比为4.6
45、%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销售额8.03亿元),图像采集卡的销售额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为153家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。四、 构建现代产业体系,提高经济质量效益和核心竞争力坚持把发展经济的着力点放在实体经济上,推进产业基础高级化、产业链现代化,加快打造以战略性新兴产业
46、为引领、先进制造业为支撑、现代服务业为主体的现代产业体系,实现产业有机更新、迭代发展,努力推动经济体系优化升级。(一)突破性发展数字经济全面实施数字经济“573”工程,创建国家数字经济创新发展试验区,打造数字武汉。促进数字经济与实体经济深度融合,加快推进数字产业化、产业数字化,推动大数据、云计算、人工智能、区块链、物联网等新一代信息技术深度应用,加速建设国家新一代人工智能创新发展试验区,创建国家“5G+工业互联网”先导区,打造具有国际竞争力的数字产业集群。加强数字城市建设,提升公共服务、社会治理等数字化智能化水平。积极参与数据资源产权、交易流通、跨境传输和安全保护等国家、行业基础标准制定,推动
47、数据资源安全有序开放和有效利用。(二)做大做强支柱产业集群强力推进制造强市战略,巩固壮大实体经济根基。实施支柱产业壮大工程,打造“光芯屏端网”新一代信息技术、汽车制造和服务、大健康和生物技术、高端装备制造、智能建造、商贸物流、现代金融、绿色环保、文化旅游等支柱产业,全面推进新一轮技改,促进钢铁、石化、建材、食品、轻工、纺织等传统产业向高端化、智能化、绿色化转型升级。实施产业基础再造工程,聚焦核心基础零部件(元器件)、关键基础材料、先进基础工艺和产业技术基础等方面的短板弱项,集中资源攻关突破。实施产业链提升工程,大力“建链、补链、强链”,加快发展服务经济、头部经济、枢纽经济、信创经济、流量经济,发展服务型制造,推动技术进“