江西高端制造装备核心部件项目申请报告.docx

上传人:m**** 文档编号:58526240 上传时间:2022-11-07 格式:DOCX 页数:142 大小:131.69KB
返回 下载 相关 举报
江西高端制造装备核心部件项目申请报告.docx_第1页
第1页 / 共142页
江西高端制造装备核心部件项目申请报告.docx_第2页
第2页 / 共142页
点击查看更多>>
资源描述

《江西高端制造装备核心部件项目申请报告.docx》由会员分享,可在线阅读,更多相关《江西高端制造装备核心部件项目申请报告.docx(142页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、泓域咨询/江西高端制造装备核心部件项目申请报告报告说明在工业相机领域,据GIR(GlobalInfoResearch)机构按收入统计调研数据知,2021年全球工业相机收入大约18.11亿美元,预计2028年将达到29.05亿美元,在2022-2028年期间,全球工业相机市场规模将以年均7.0%的复合增长率增长;在图像采集卡领域,据QYResearch、东莞证券研究所数据,2020年全球图像采集卡市场规模为3.31亿美元,预计2025年将达到4.23亿美元,年均复合增长率将达到5.03%。根据谨慎财务估算,项目总投资23087.24万元,其中:建设投资17717.39万元,占项目总投资的76.7

2、4%;建设期利息375.79万元,占项目总投资的1.63%;流动资金4994.06万元,占项目总投资的21.63%。项目正常运营每年营业收入45600.00万元,综合总成本费用35430.72万元,净利润7447.20万元,财务内部收益率23.93%,财务净现值8717.37万元,全部投资回收期5.71年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。此项目建设条件良好,可利用当地丰富的水、电资源以及便利的生产、生活辅助设施,项目投资省、见效快;此项目贯彻“先进适用、稳妥可靠、经济合理、低耗优质”的原则,技术先进,成熟可靠,投产后可保证达到预定的设计目标。本报告为模板参考范

3、文,不作为投资建议,仅供参考。报告产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。目录第一章 项目基本情况8一、 项目名称及投资人8二、 编制原则8三、 编制依据9四、 编制范围及内容9五、 项目建设背景10六、 结论分析11主要经济指标一览表13第二章 市场预测16一、 机器视觉行业发展概况16二、 全球发展现状17三、 行业发展历程18第三章 项目投资背景分析21一、 机器视觉行业的发展动力21二、 国内发展现状24三、 机器视觉行业新技术未来发展趋势28四、 精准扩大有效投资32五、

4、 项目实施的必要性34第四章 项目选址分析36一、 项目选址原则36二、 建设区基本情况36三、 着力畅通经济循环39四、 打好产业基础高级化、产业链现代化攻坚战40五、 项目选址综合评价40第五章 产品规划与建设内容41一、 建设规模及主要建设内容41二、 产品规划方案及生产纲领41产品规划方案一览表42第六章 建筑工程可行性分析44一、 项目工程设计总体要求44二、 建设方案45三、 建筑工程建设指标48建筑工程投资一览表49第七章 运营模式分析50一、 公司经营宗旨50二、 公司的目标、主要职责50三、 各部门职责及权限51四、 财务会计制度55第八章 法人治理结构60一、 股东权利及义

5、务60二、 董事64三、 高级管理人员69四、 监事71第九章 发展规划73一、 公司发展规划73二、 保障措施77第十章 环保分析81一、 编制依据81二、 环境影响合理性分析82三、 建设期大气环境影响分析84四、 建设期水环境影响分析85五、 建设期固体废弃物环境影响分析86六、 建设期声环境影响分析86七、 环境管理分析87八、 结论及建议89第十一章 劳动安全生产91一、 编制依据91二、 防范措施92三、 预期效果评价95第十二章 原辅材料供应及成品管理96一、 项目建设期原辅材料供应情况96二、 项目运营期原辅材料供应及质量管理96第十三章 投资方案98一、 编制说明98二、 建

6、设投资98建筑工程投资一览表99主要设备购置一览表100建设投资估算表101三、 建设期利息102建设期利息估算表102固定资产投资估算表103四、 流动资金104流动资金估算表104五、 项目总投资105总投资及构成一览表106六、 资金筹措与投资计划106项目投资计划与资金筹措一览表107第十四章 项目经济效益108一、 经济评价财务测算108营业收入、税金及附加和增值税估算表108综合总成本费用估算表109固定资产折旧费估算表110无形资产和其他资产摊销估算表111利润及利润分配表112二、 项目盈利能力分析113项目投资现金流量表115三、 偿债能力分析116借款还本付息计划表117第

7、十五章 项目风险分析119一、 项目风险分析119二、 项目风险对策121第十六章 招标方案124一、 项目招标依据124二、 项目招标范围124三、 招标要求124四、 招标组织方式125五、 招标信息发布128第十七章 总结分析129第十八章 附表附录131建设投资估算表131建设期利息估算表131固定资产投资估算表132流动资金估算表133总投资及构成一览表134项目投资计划与资金筹措一览表135营业收入、税金及附加和增值税估算表136综合总成本费用估算表136固定资产折旧费估算表137无形资产和其他资产摊销估算表138利润及利润分配表138项目投资现金流量表139第一章 项目基本情况一

8、、 项目名称及投资人(一)项目名称江西高端制造装备核心部件项目(二)项目投资人xx投资管理公司(三)建设地点本期项目选址位于xxx(以最终选址方案为准)。二、 编制原则1、政策符合性原则:报告的内容应符合国家产业政策、技术政策和行业规划。2、循环经济原则:树立和落实科学发展观、构建节约型社会。以当地的资源优势为基础,通过对本项目的工艺技术方案、产品方案、建设规模进行合理规划,提高资源利用率,减少生产过程的资源和能源消耗延长生产技术链,减少生产过程的污染排放,走出一条有市场、科技含量高、经济效益好、资源消耗低、环境污染少、资源优势得到充分发挥的新型工业化路子,实现可持续发展。3、工艺先进性原则:

9、按照“工艺先进、技术成熟、装置可靠、经济运行合理”的原则,积极应用当今的各项先进工艺技术、环境技术和安全技术,能耗低、三废排放少、产品质量好、经济效益明显。4、提高劳动生产率原则:近一步提高信息化水平,切实达到提高产品的质量、降低成本、减轻工人劳动强度、降低工厂定员、保证安全生产、提高劳动生产率的目的。5、产品差异化原则:认真分析市场需求、了解市场的区域性差别、针对产品的差异化要求、区异化的特点,来设计不同品种、不同的规格、不同质量的产品以满足不同用户的不同要求,以此来扩大市场占有率,寻求经济效益最大化,提高企业在国内外的知名度。三、 编制依据1、承办单位关于编制本项目报告的委托;2、国家和地

10、方有关政策、法规、规划;3、现行有关技术规范、标准和规定;4、相关产业发展规划、政策;5、项目承办单位提供的基础资料。四、 编制范围及内容依据国家产业发展政策和有关部门的行业发展规划以及项目承办单位的实际情况,按照项目的建设要求,对项目的实施在技术、经济、社会和环境保护等领域的科学性、合理性和可行性进行研究论证。研究、分析和预测国内外市场供需情况与建设规模,并提出主要技术经济指标,对项目能否实施做出一个比较科学的评价,其主要内容包括如下几个方面:1、确定建设条件与项目选址。2、确定企业组织机构及劳动定员。3、项目实施进度建议。4、分析技术、经济、投资估算和资金筹措情况。5、预测项目的经济效益和

11、社会效益及国民经济评价。五、 项目建设背景机器视觉部件硬件性能的不断升级与软件技术不断进步,促进了机器视觉产品的持续更新迭代,使机器视觉在传统应用领域不断深入,且新型应用领域不断涌现。例如,近年来3D工业相机在国内外开始投入工业应用,执行多样而复杂的检测、定位、测量和识别任务,通过对表面形貌的获取,在二维图像信息的基础上,进一步丰富了对目标物特征的采集,为复杂工业检测提供了更多的可能性;多光谱相机也以其独特的优势在半导体晶圆检测和光伏硅电池检测中逐步推广。与AI、5G等智能和物联新技术的结合可拓展机器视觉应用的广度,例如全息感知技术在智慧交通建设中通过流量监测、智能交通信号灯等应用提高平均车速

12、和事故处理效率;在智慧工厂应用中以5G云平台与机器视觉硬件结合,可实现产线柔性化部署、算法快速自优化,为其他应用场景如智慧水务、智慧园区、智慧物流提供重要参考。锚定二三五年远景目标,坚持目标导向与问题导向相结合、中长期目标和短期目标相贯通、尽力而为和量力而行相统一,确保开好局、起好步。今后五年的奋斗目标是:经济综合实力实现新跨越。在质量效益明显提升的基础上,实现经济持续平稳健康发展。增长潜力充分发挥,主要经济指标增速保持全国“第一方阵”。经济总量在全国位次进一步前移,人均地区生产总值与全国平均水平的差距进一步缩小。全省发展态势和成效力争达到全国一流。发展质量效益实现新提升。创新引领发展能力明显

13、增强,综合科技创新水平达到全国中上游水平。产业基础高级化、产业链现代化水平明显提高,农业基础更加稳固,加快建设国家绿色有机农产品、数字经济、有色金属、航空等装备制造、新能源新材料、中医药、文化和旅游等产业重要基地,打造全国传统产业转型升级高地和新兴产业培育发展高地。投资质量持续提高,消费贡献稳步上升,外贸进出口结构不断优化,供需结构更趋协调均衡。六、 结论分析(一)项目选址本期项目选址位于xxx(以最终选址方案为准),占地面积约53.00亩。(二)建设规模与产品方案项目正常运营后,可形成年产xx套高端制造装备核心部件的生产能力。(三)项目实施进度本期项目建设期限规划24个月。(四)投资估算本期

14、项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资23087.24万元,其中:建设投资17717.39万元,占项目总投资的76.74%;建设期利息375.79万元,占项目总投资的1.63%;流动资金4994.06万元,占项目总投资的21.63%。(五)资金筹措项目总投资23087.24万元,根据资金筹措方案,xx投资管理公司计划自筹资金(资本金)15418.09万元。根据谨慎财务测算,本期工程项目申请银行借款总额7669.15万元。(六)经济评价1、项目达产年预期营业收入(SP):45600.00万元。2、年综合总成本费用(TC):35430.72万元。3、项目达产年净

15、利润(NP):7447.20万元。4、财务内部收益率(FIRR):23.93%。5、全部投资回收期(Pt):5.71年(含建设期24个月)。6、达产年盈亏平衡点(BEP):14129.37万元(产值)。(七)社会效益项目产品应用领域广泛,市场发展空间大。本项目的建立投资合理,回收快,市场销售好,无环境污染,经济效益和社会效益良好,这也奠定了公司可持续发展的基础。本项目实施后,可满足国内市场需求,增加国家及地方财政收入,带动产业升级发展,为社会提供更多的就业机会。另外,由于本项目环保治理手段完善,不会对周边环境产生不利影响。因此,本项目建设具有良好的社会效益。(八)主要经济技术指标主要经济指标一

16、览表序号项目单位指标备注1占地面积35333.00约53.00亩1.1总建筑面积63022.651.2基底面积20139.811.3投资强度万元/亩316.752总投资万元23087.242.1建设投资万元17717.392.1.1工程费用万元14963.372.1.2其他费用万元2371.812.1.3预备费万元382.212.2建设期利息万元375.792.3流动资金万元4994.063资金筹措万元23087.243.1自筹资金万元15418.093.2银行贷款万元7669.154营业收入万元45600.00正常运营年份5总成本费用万元35430.726利润总额万元9929.607净利润万

17、元7447.208所得税万元2482.409增值税万元1997.2810税金及附加万元239.6811纳税总额万元4719.3612工业增加值万元16004.4813盈亏平衡点万元14129.37产值14回收期年5.7115内部收益率23.93%所得税后16财务净现值万元8717.37所得税后第二章 市场预测一、 机器视觉行业发展概况机器视觉系统是集光学、机械、电子、计算、软件等技术为一体的工业应用系统,它通过对电磁辐射的时空模式进行探测及感知,可以自动获取一幅或多幅目标物体图像,对所获取图像的各种特征量进行处理、分析和测量,根据测量结果做出定性分析和定量解释,从而得到有关目标物体的某种认识并

18、作出相应决策,执行可直接创造经济价值或社会价值的功能活动。我国机器视觉行业属于技术更新较快、受市场主导型产业,行业内企业竞争程度较高。机器视觉产业链中相关企业主要分为三类:上游的机器视觉部件提供商、中游的相关装备制造商及机器视觉系统商、下游的机器视觉产品的终端应用商。机器视觉行业内上游企业专注于与机器视觉相关的软硬部件的生产与研发。其中,硬件包括光源、镜头、工业相机、图像采集卡以及控制器及配件等;软件包括图像处理软件以及底层算法平台等构成的机器视觉软件及算法。根据开源证券工业机器视觉之“眼”机器视觉报告,在目前的整个机器视觉系统成本构成上,核心零部件大约占比45%、软件开发大约占比35%、组装

19、集成大约占比15%、维护服务大约占比5%,核心零部件和软件开发是产业链中绝对的核心环节。机器视觉行业内中游企业为机器视觉装备制造商与机器视觉系统商。其中,机器视觉系统包含独立完整的成像单元(光源、镜头、相机)和相应的算法软件,集图像采集、处理与通信功能于一身,可以灵活的进行配置和控制。而机器视觉装备则以机器视觉系统的感知能力和分析决策能力为核心,在系统的基础上赋予了设备自动化和智能化的功能,将其应用在下游实际的生产运作之中,可实现多种功能。机器视觉行业下游主要为机器视觉设备的终端应用场景。具体来说,由于机器视觉具有定位、识别、测量、检测四大功能,通常下游应用企业会将相关设备配置应用在产品生产制

20、造过程中的检测、筛查等重要环节,从而达到提高良品率、提升生产效率、减少对人工的依赖以及节约成本等目的。因此,工业相机、图像采集卡作为机器视觉设备的核心部件之一,将被广泛应用于生产生活的各个领域。此外,未来随着工业智能制造的不断升级,机器视觉设备在各个行业的渗透率将进一步提高,相关核心部件的市场需求有望迎来新一轮的爆发增长。二、 全球发展现状2020年全球机器视觉市场规模为96亿美元,在2015-2020年期间实现了11.4%的年均复合增长率。未来,预计2021-2025年全球机器视觉市场将以6.3%的年复合增长率进行增长,2025年全球机器视觉市场将达到130亿美元的规模,行业整体将进入稳定发

21、展的新时期。其中,工业相机和图像采集卡作为机器视觉系统的核心部件,相关细分市场发展深受机器视觉行业影响,将有望成为行业内最具发展前景的细分市场之一。在工业相机领域,据GIR(GlobalInfoResearch)机构按收入统计调研数据知,2021年全球工业相机收入大约18.11亿美元,预计2028年将达到29.05亿美元,在2022-2028年期间,全球工业相机市场规模将以年均7.0%的复合增长率增长;在图像采集卡领域,据QYResearch、东莞证券研究所数据,2020年全球图像采集卡市场规模为3.31亿美元,预计2025年将达到4.23亿美元,年均复合增长率将达到5.03%。从区域分布来看

22、,根据前瞻产业研究院、申港证券研究所数据,2019年全球机器视觉市场份额占比最大的为欧洲地区,占比为36.4%;其次是北美地区,占比29.3%;随着我国在机器视觉行业的快速发展,以中国为代表的亚太地区正迎头赶上,份额占比已达到25.3%。三、 行业发展历程从全球范围来看,机器视觉行业起源于20世纪70年代,发展至今,行业已经历五个发展阶段。第一阶段,1969-1979年,在成像传感器诞生的驱动下,机器视觉进入产业萌芽期。1969年美国贝尔实验室成功研制出CCD传感器,可以直接把图像转换为数字信号并存储到电脑中参与计算和分析,从而为机器视觉的产生奠定了基础;第二阶段,1980-1989年,在需求

23、应用的驱动下,机器视觉进入起步期。机器视觉概念首次在产业界被提及,加拿大的TeledyneDalsa、英国的E2V以及美国的Cognex(康耐视)等相关知名企业诞生;第三阶段,1990-1999年,随着需求端应用的不断发展,机器视觉行业进入成长波动期。其中,1990年半导体产业的发展为机器视觉行业提供了较大的发展潜力,但受限于成像技术和算法算力尚不成熟,无法有效满足行业的应用需求,难以全面推广;第四阶段,2000-2009年,在应用和算力的共同驱动下,机器视觉进入产业发展早期。在CPU算力大幅提升,FPD平板显示制造、PCB检测和汽车制造等行业陆续对机器视觉技术应用表现出强烈需求的双重因素影响

24、下,产业需求和技术进步共同促进了机器视觉行业的快速发展与繁荣。我国机器视觉产业也在这个阶段加入了全球阵营;第五阶段,2010-2020年,AI算法的兴起推动机器视觉进入发展中期。2016年以来AI迅速发展,随着人工智能赋能的机器视觉开始在智能制造应用中的加速普及,相关产业得到了进一步发展。相较而言,我国机器视觉行业虽起步较晚,但发展速度较快,行业已经历三个发展阶段。第一阶段,1995-1999年,随着对国外设备与技术的引进与吸收,我国机器视觉行业进入了萌芽期。但由于算法、算力及成像技术尚不成熟,我国仅有航空航天、军工及高端科研等核心机构和行业开始出现应用,部分相关企业作为国外代理会提供机器视觉

25、器件及技术服务;第二阶段,2000-2008年,在应用与算法的双驱动下,我国机器视觉行业迈入了起步期。随着算力强度的进一步提升,且国内如人民币印钞质量检测、邮政分拣等行业对机器视觉提出强烈的应用需求,我国开始出现一些专业的机器视觉企业;第三阶段,2009-2020年,我国机器视觉产业逐步进入高速发展期。特别指出的是,2010年后,以苹果为代表的手机产业的飞速发展给整个3C电子制造业带来巨大的变革。一方面,随着3C电子制造产业进入高精度时代,迫切需要用机器替代人工来保障产品加工精度和质量的一致性;另一方面,3C电子由于更新较快,应用场景较为丰富,大大扩展了机器视觉的应用。受到这两方面因素的共同影

26、响,加速促进了我国机器视觉产业的发展,我国陆续涌现出近百家机器视觉企业。此外,2016年以来AI算法的发展,再次为我国机器视觉行业注入新一轮的发展活力。整体来看,从2010年开始的近十年,我国机器视觉产业发展一直保持20%-30%的增速。第三章 项目投资背景分析一、 机器视觉行业的发展动力1、人口老龄化加剧,劳动力成本上升目前,我国人口结构正在发生较大变化,60岁以上老人所占人数比例逐渐提升,人口老龄化问题日益突出。根据国家统计局数据显示,2021年我国60岁及以上人口为26,736万人,占18.9%(其中,65岁及以上人口为20,056万人,占14.2%,我国正式跨入中度老龄社会的行列)。2

27、011年-2021年期间,60岁及以上人口的比重由13.7%上升至18.9%,上升了5.2%。从制造业角度来看,老龄化趋势不利于劳动力密集型产业发展,人口老龄化使得我国制造业的劳动力供需愈发的紧张,劳动力成本优势不再,用工成本不断提高。根据国家统计局数据,2020年我国城镇单位就业人员年平均工资上涨至9.74万元,比2019年增加0.69万元。此外,劳动力的愈发短缺、劳动力成本的不断提升,将进一步促使传统的劳动密集型产业寻求转变,利用机器视觉行业可有效解决这一问题。特别是在需要重复性、繁重性生产加工环节中,机器视觉系统的效用发挥的淋漓尽致。机器视觉的稳定性、客观性、精确性在制造业中对人眼形成了

28、很好替代,同时完善了制造业的工艺环节,推动制造业向高端化、智能化、自动化方向发展。2、技术升级驱动由于人力成本不断攀升、年轻劳动力流失等问题日渐凸显,大量制造业企业开始逐步引入自动化设备替代人工。近两年,受新冠疫情的影响,企业综合成本不断上升,对“机器换人”的需求更加迫切、新冠疫情影响在一定程度上倒逼企业加速自动化、智能化的革新升级;另一方面,机器视觉技术是实现智能制造的重要技术之一,可实现工业自动化现场的产品缺陷检测、机器视觉引导定位等,为工业机器人代替人力起着重要且决定性的作用。尤其在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,用机器视觉来替代人工视觉已成为解决问题的重

29、要方式,同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉产品解决问题、难题、行业痛点的能力进一步加强。因此,技术升级是机器视觉行业发展的核心驱动力之一。3、受益于快速增长的智能制造产业发展2021年12月,工信部、发改委等八部门发布的“十四五”智能制造发展规划提到“深入实施智能制造工程,着力提升创新能力、供给能力、支撑能力和应用水平,加快构建智能制造发展生态,持续推进制造业数字化转型、网络化协同、智能化变革,构建虚实融合、知识驱动、动态优化、安全高效、绿色低碳的智能制造系统。到2025年,规模以上制造业企业大部分实现数字化、网络化,重点行业骨干企业初步应用智能化;

30、到2035年,规模以上制造业企业全面普及数字化、网络化,重点行业骨干企业基本实现智能化。”因此,鼓励并支持传统制造业智能升级,形成以数字化、网络化、智能化为特征的新型智能制造行业已成为推动我国经济高质量发展的新基础。从机器视觉来看,机器视觉产品需求与制造业的规模及智能程度发展水平密切相关。机器视觉是实现工业自动化和智能化的必要手段,相当于人类视觉在机器上的延伸。它具备高度自动化、高效率、高精度和适应较差环境等优点,具有四大优势。第一,智能识别,能够从大量信息中找到关键特征,识别准确度和可靠度极高;第二,智能测量,测量是工业制造的基础,要求测量的标准与细节精度较为严格;第三,智能检测,在测量的基

31、础上,能够综合分析判断多样化的信息及指标,做出基于复杂逻辑的智能化判断;第四,智能互联,图像的海量数据在多节点采集互联,同时将人员、设备、生产物资、环境、工艺等数据相互联系,进而衍生出深度学习、智能优化、智能预测等创新能力。因此,在智能制造过程中,机器视觉主要用计算机来模拟人的视觉功能,把客观事物的图像信息提取、处理并理解,最终用于实际检测、测量和控制。随着制造业智能发展的快速增长,市场对于机器视觉的需求也将逐渐增多。相应的,机器视觉行业规模将受益于快速增长的智能制造产业的发展而进一步增长。根据中商产业研究院数据显示,2019年我国智能制造装备产值规模达17,776亿元,2020年规模达20,

32、900亿元。2021年我国智能制造装备产值规模将达22,650亿元。二、 国内发展现状根据机器视觉产业联盟(CMVU)在2021年度统计153家企业的样本调查数据,2021年我国机器视觉行业销售额为163.8亿元,较2020年增长34.5%。同时,受益于国家对智能制造产业的政策支持、我国制造业总体规模的进一步扩大以及下游应用行业的不断拓展等因素的影响,2019-2021年期间,我国机器视觉行业的年均复合增长率达到了22.9%,市场规模持续扩大。未来三年,考虑到宏观经济的复苏回暖、国产替代浪潮兴起、行业技术的创新升级以及下游应用领域的进一步延伸等因素,预计我国机器视觉行业发展将进入快车道,行业规

33、模将从2022年的215.1亿元增长至2024年的403.6亿元,实现年均37.0%的复合增长。从企业数量来看,虽然我国机器视觉行业起步较晚,但近年来,随着我国陆续出台一系列相关政策对智能制造、机器视觉行业的鼓励和支持,进入相关领域的企业数量不断增多。根据前瞻产业研究院数据,在2017-2020年期间,每年新增企业数量均超过600家。其中,2019年新增企业数量达到峰值819家,2020年受新冠疫情的影响,行业内新增企业数量稍有回落,但仍达到637家。目前,我国各种类型的机器视觉企业已累计超过4,000家。此外,据机器视觉产业联盟(CMVU)的调查数据显示,进入中国的国际机器视觉品牌已超过20

34、0家。 从产品类型来看,根据机器视觉产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样本企业调查数据统计,2019-2021年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的

35、市场。其中,2D相机(面阵相机)的销售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021年我国图像采集卡的销售额占比为4.6%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销

36、售额8.03亿元),图像采集卡的销售额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为153家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。从产品类型来看,根据机器视觉产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样

37、本企业调查数据统计,2019-2021年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的市场。其中,2D相机(面阵相机)的销售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021

38、年我国图像采集卡的销售额占比为4.6%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销售额8.03亿元),图像采集卡的销售额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为153家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。从产品类型来看,根据机器视觉产业联盟(CMVU)的分类,我国机器视觉行业主要的产品/服务包括系统、组件和服务三大

39、类。其中,机器视觉组件包括光学元件及镜头、2D相机(面阵相机)、照明光源或其他结构光源、3D相机/3D采集设备、工业线扫描相机、图像采集卡、视觉软件(单独销售的产品)、接口及其他组件等。据机器视觉产业联盟(CMVU)2021年度对153家样本企业调查数据统计,2019-2021年,机器视觉组件销售额从67.3亿元增长至98.0亿元,年均复合增长率为20.7%,虽占行业销售额比例从62.0%略微下降至59.8%,但仍占据整体销售额的一半之多,是我国机器视觉细分行业产值规模最大的市场。其中,2D相机(面阵相机)的销售额占比为12.7%,是机器视觉组件大类中的第二大细分市场,且2019-2021年销

40、售额同期年均复合增长率达到39.4%;工业线扫描相机的销售额占比为4.9%,若将工业线扫描相机与面阵相机统一划分为工业相机的统计口径来看,2021年工业相机产品的销售额占比为17.6%,俨然已成为机器视觉组件的第一大细分市场;此外,2021年我国图像采集卡的销售额占比为4.6%。进一步来看,通过将2021年我国机器视觉行业整体销售额163.8亿元乘以相应细分产品占比数据,即可得到2021年我国工业相机产品的销售额为28.83亿元(面阵相机销售额20.80亿元,工业线扫描相机销售额8.03亿元),图像采集卡的销售额为7.53亿元。此外,受到机器视觉产业联盟(CMVU)2021年度调查数据仅为15

41、3家样本数量的限制,叠加这部分因素的影响,因此,2021年我国机器视觉行业中关于工业相机、图像采集卡的实际销售金额将进一步放大。三、 机器视觉行业新技术未来发展趋势1、高精度高分辨率光学成像技术高精度光学成像是机器视觉行业始终追求的技术发展目标。高精度光学成像需要光源、镜头、相机、图像采集卡等各部分的精密配合,要求新型光源、更全面的波长覆盖和创新的光源布局等光源技术,以及提供更大靶面和更小像元的新型镜头和相机产品。高精度光学成像技术增强了机器视觉的图像信息获取能力,通过多样化光学成像技术,获取到传统成像中难以获取的图像信息,并通过高速、高灵敏度的图像采集技术深度挖掘图像中隐含的内部信息,满足更

42、高分辨率、更多维度、更大空间带宽积的光电成像需求。2、3D视觉技术目前机器视觉主要采用的2D机器视觉技术仅能获取固定平面内的形状及纹理信息等二维图像,这主要基于物体在灰度或者彩色图像中对比度的特征提供处理分析结果。2D机器视觉技术的缺点包括无法提供物体高度、平面度、表面角度、体积等三维信息;容易受光照条件变化的影响;对物体的运动比较敏感等。随着智能制造变革来临,面对复杂的物件辨识和尺寸量度任务,以及人机互动所需要的复杂互动,2D视觉在精度和距离测量方面均出现技术限制。3D机器视觉技术相对于2D技术提供了更丰富的被摄目标信息,可以识别物体的深度、形貌、位姿等3D信息。3D技术提供了丰富的三维信息

43、,使机器能够感知物理环境的变化,并相应地进行调整,从而在应用中提高了灵活性和实用性,扩大了机器视觉的应用场景。3、多光谱成像技术多光谱技术,利用像元级的镀膜技术实现对不同波长光谱信号的采集,从而得到高分辨率的多/高光谱的图像信号,大大简化了视觉系统的光学部件复杂性。光谱技术推动机器视觉实现目标的多种特征分析。随着机器视觉的快速发展和普及,机器视觉产品已经广泛应用于3C、锂电池、半导体、PCB、新型显示、汽车零配件、光伏、物流、医药、包装印刷、轨道交通等众多产业中。各行业样本的复杂性要求机器视觉从可见光光谱到非可见光光谱、从单一光谱到多光谱,不仅需要实现目标的外观检测,也需要实现目标的材料成分、

44、颜色、温度等复杂特征的分析。多光谱技术利用光的衍射和折射特性,通过光栅、棱镜等分光元件,获取到不同谱段的有效信号,实现目标高维信息参量获取,并通过相关分析算法将谱域信号与测量需求建立联系,如物质成分、温度、三维面型等,进而满足复杂多样化的测量需求。4、高集成智能相机技术在工业领域中,随着机器视觉的应用逐渐深入,自动化程度越来越高,机器视觉核心部件的智能化程度不断提升,集成更多边缘智能已经成为工业相机未来发展的主要趋势之一。智能工业相机是一个兼具图像采集、图像处理和信息传递功能的小型机器视觉检测系统,是一种嵌入式计算机视觉检测系统,提供了具有多功能、模块化、高可靠性、易于实现的机器视觉解决方案。

45、它将图像传感器、处理模块、通讯模块和其他外设集成到一个单一的相机内,由于这种一体化的设计,可降低系统的复杂度,并提高可靠性,同时系统尺寸大大缩小,拓宽了机器视觉的应用领域。智能工业相机可以在特定的应用环境中实现图像处理并利用内嵌的人工智能算法做出逻辑判断,为自动化场景提供无需人工干预的智能方案,是工业自动化领域集成边缘智能的重要手段。通过对智能芯片和算法的集成,智能工业相机具有强大的软硬件功能,未来将在各个工业领域中发挥重要作用,例如可应用于高端工业检查、产品分类、质量检测、视觉传感器网络、条码阅读、入侵检测和交通监控等工业过程。深度学习方法作为传统神经网络的拓展,近年来在语音、图像、自然语言

46、等的语义认知问题上取得巨大的进展,为解决机器视觉大数据的表示和理解问题提供了通用的框架。随着机器视觉在不同行业应用的扩展,传统算法的机器视觉在针对缺陷类型复杂化、细微化、背景噪声复杂等外观检测以及分选定级应用场景时,呈现通用性低、不易复制、对使用人员要求高等缺点。基于深度学习的机器视觉采用更复杂的规则实现精细的量化评估,凭借AI深度学习更强的特征提取能力为机器视觉提供更多应用可能,使得机器视觉能够解决更加复杂背景下的定位与识别、工件的缺陷检测和分割、畸变物体的分类、难辨字符与文本的读取等复杂的工作任务。随着工业机器视觉的检测对象越来越复杂,应用越来越广泛,机器视觉应用逐渐从传统机器视觉向基于深

47、度学习的机器视觉过渡,机器视觉的应用领域也会因深度学习技术而得到极大扩展。此外,基于深度学习方法的机器视觉系统对机器视觉核心部件的软硬件水平提出了更高要求,与深度学习算法相匹配的工业相机和图像采集卡等机器视觉核心部件的技术发展将成为机器视觉未来发展趋势之一。四、 精准扩大有效投资充分发挥投资对优化供给结构的关键性作用,聚焦“两新一重”实施一批强基础、增功能、利长远的重大项目,推动投资规模合理增长、结构持续优化、质量不断提升。加强新型基础设施建设。面向信息基础设施、融合基础设施、创新基础设施三大方向,系统布局新型基础设施建设。全面推进物联网感知设施、高速智能信息网络、一体化大数据中心体系等信息基础设施建设,统筹部署窄带物联网、千兆光纤、数据中心及运算中心等建设,加快实现重

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁