《2023年人教版七年级上册数学课本知识点归纳.docx》由会员分享,可在线阅读,更多相关《2023年人教版七年级上册数学课本知识点归纳.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级上册数学知识点归纳第一章有理数(一) 正负数1正数:大于0的数。2负数:小于0的数。30即不是正数也不是负数。4正数大于0,负数小于0,正数大于负数。(二)有理数1有理数:由整数和分数组成的数。涉及:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:)2整数:正整数、0、负整数,统称整数。3分数:正分数、负分数。(三)数轴1数轴:用直线上的点表达数,这条直线叫做数轴。(画一条直线,在直线上任取一点表达数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以
2、便在数轴上取点。)2数轴的三要素:原点、正方向、单位长度。3相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4绝对值:(1)正数的绝对值是它自身,负数的绝对值是它的相反数;0的绝对值是0。(2)正数比0大,负数比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.5.倒数:乘积为1的两个数互为倒数;注意:0没有倒数。倒数是自身的数是1(四)有理数的加减法1先定符号,再算绝对值。2加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值
3、减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3加法互换律:a+b= b+ a 两个数相加,互换加数的位置,和不变。4加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5减法法则:减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2乘积是1的两个数互为倒数。3乘法互换律:ab= b a4乘法结合律:(ab)c = a (b c)5乘法分派律:a(b +c)= a b+ ac(六)有理数除法1先将除法化成乘法,然
4、后定符号,最后求结果。2除以一个不等于0的数,等于乘这个数的倒数。3两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3. a2是重要的非负数,即a20;若a2+|b|=0 a=0,b=0;(八)有理数的加减乘除混合运算法则1先乘方,再乘除,最后加减。2同级运算,从左到右进行。3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。4.科学记数法:把一个大于10的数记成a10n的形式,其中a
5、是整数数位只有一位的数,这种记数法叫科学记数法.5.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数的精确到那一位.6.有效数字:从左边第一个不为零的数字起,到精确的数为止,所有数字都叫做这个近似数的有效数字。第二章整式(一)整式1整式:单项式和多项式的统称叫整式。2单项式:数或字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3系数;单项式中的数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5多项式:几个单项式的和叫做多项式。6项:组成多项式的每个单项式叫做多项式的项。7常数项:不含字母的项叫做常数项。8多项式的次数:多项
6、式中,次数最高的项的次数叫做这个多项式的次数。9同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。11多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应当进行升幂(或降幂)排列.12. 几个重要的代数式:(m、n表达整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若
7、m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(二) 整式加减整式加减运算时,假如碰到括号先去括号,再合并同类项。1去括号:一般地,几个整式相加减,假如有括号就先去括号,然后再合并同类项。假如括号外的因数是正数,去括号后原括号内各项的符号与本来的符号相同。假如括号外的因数是负数,去括号后原括号内各项的符号与本来的符号相反。2合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变第三章 一元一次方程分析实际问题中的数量关系,运用其中的相等关系列出方程,是用数学解决实际问题的一种方法。(一
8、)方程:先设字母表达未知数,然后根据相等关系,写出具有未知数的等式叫方程。(二)一元一次方程。1一元一次方程:方程里只具有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。2解:求出的方程中未知数的值叫做方程的解。注意:“方程的解就能代入”(二)等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。假如a= b,那么a c= b c2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。假如a= b,那么a c= b c;假如a= b,(c0),那么a c = b c。(三)解方程的环节解一元一次方程的环节:去分母、去括号、移项、合并同类项,未知数系数化为1。1去分母
9、:把系数化成整数。2去括号3移项:把等式一边的某项变号后移到另一边。4合并同类项5系数化为1第四章图形结识初步一、图形结识初步1几何图形:把从实物中抽象出来的各种图形的统称。2平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。3立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。4展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5点,线,面,体图形是由点,线,面构成的。线与线相交得点,面与面相交得线。点动成线,线动成面,面动成体。二、直线、线段、射线1线段:线段有两个端点。2射线:
10、将线段向一个方向无限延长就形成了射线。射线只有一个端点。3直线:将线段的两端无限延长就形成了直线。直线没有端点。4两点拟定一条直线:通过两点有一条直线,并且只有一条直线。5相交:两条直线有一个公共点时,称这两条直线相交。6两条直线相交有一个公共点,这个公共点叫交点。7中点:M点把线段AB提成相等的两条线段AM与MB,点M叫做线段AB的中点。8线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)9距离:连接两点间的线段的长度,叫做这两点的距离。三、角1角:有公共端点的两条射线组成的图形叫做角。2角的度量单位:度、分、秒。3角的度量与表达:角由两条具有公共端点的射线组成,两条射线的公共端
11、点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。4角的比较:角也可以当作是由一条射线绕着他的端点旋转而成的。平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。平分线:从一个角的顶点引出的一条射线,把这个角提成两个相等的角,这条射线叫做这个角的平分线。工具:量角器、三角尺、经纬仪。5余角和补角余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。补角的性质:等角的补角相等余角的性质:等角的余角相等