《2023年苏教版八年级数学全册知识点总结.doc》由会员分享,可在线阅读,更多相关《2023年苏教版八年级数学全册知识点总结.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、苏教版数学(八年级上册)知识点总结轴对称轴对称的性质轴对称图形线段角等腰三角形DBA等腰三角形轴对称的应用等腰梯形设计轴对称图案第一章 轴对称图形第二章 勾股定理与平方根一勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理假如三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数,称为勾股数。二、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起
2、来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后具有的数,如+8等;(3)有特定结构的数,如0.等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根 1、算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表达方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表达方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方
3、根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性: 03、立方根一般地,假如一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表达方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表达的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表达的两个数,右边的数总比左边的数
4、大。(2)求差比较:设a、b是实数,(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。五、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,假如有括号,就先算括号里面的。(3)运算律加法互换律 加法结合律 乘法互换律 乘法结合律 乘法对加法的分派律 第三章 中心对称图形(一)一、平移 1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质平移前后两个图形是全等图形,相应点连线平行且相等,相应线段平行且相等,相应角相等。二、旋转
5、1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。2、性质旋转前后两个图形是全等图形,相应点到旋转中心的距离相等,相应点与旋转中心的连线所成的角等于旋转角。三、四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。四边形的外角和定理:四边形的外角和等于360。推论:多边形的内角和定理:n边形的内角和等于180; 多边形的外角和定理:任意多边形的外角和等于360。6、设多
6、边形的边数为n,则多边形的对角线共有条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形提成(n-2)个三角形。四平行四边形 1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的鉴定(1)定义:两组对边分
7、别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积S平行四边形=底边长高=ah五、矩形 1、矩形的定义有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称
8、中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。3、矩形的鉴定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽=ab六、菱形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线
9、。3、菱形的鉴定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积 S菱形=底边长高=两条对角线乘积的一半七正方形 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3、正方形的鉴定鉴定一个四边形是正方形的重
10、要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形的面积设正方形边长为a,对角线长为b S正方形=八、梯形 (一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的鉴定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形(三)
11、等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的鉴定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)(四)梯形的面积(1)如图,(2)梯形中有关图形的面积:;八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180,假如旋转前后的图形互相重合,那么这个图形叫做中心对称图
12、形,这个点叫做它的对称中心。2、性质(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都通过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,相应线段平行(或在同一直线上)且相等。3、鉴定假如两个图形的相应点连线都通过某一点,并且被这一点平分,那么这两个图形关于这一点对称。第四章 数量、位置的变化一、 在平面内,拟定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐
13、标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴相应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表达,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不
14、同点的坐标。平面内点的与有序实数对是一一相应的。4、不同位置的点的坐标的特性 (1)、各象限内点的坐标的特性 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限(2)、坐标轴上的点的特性点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特性点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特性位于平行于
15、x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特性点P与点p关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)点P与点p关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于三、坐标
16、变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为本来的 a倍 x a, y a 放大(缩小)为本来的 a倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单第五章 一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,假如给定一个x值,相应地就拟定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数
17、故意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表达法(1)关系式(解析)法两个变量间的函数关系,有时可以用一个具有这两个变量及数字运算符号的等式表达,这种表达法叫做关系式(解析)法。(2)列表法把自变量x的一系列值和函数y的相应值列成一个表来表达函数关系,这种表达法叫做列表法。(3)图象法用图象表达函数关系的方法叫做图象法。四、由函数关系式画其图像的一般环节(1)列表:列表给出自变量与函数的一些相应值(2)描点:以表中每对相应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量
18、由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表达成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的重要特性:一次函数的图像是通过点(0,b)的直线;正比例函数的图像是通过原点(0,0)的直线。k的符号b的符号函数图像图像特性k0b0 y x 图像通过一、二、三象限,y随x的增大而增大。b0 y 0 x 图像通过一
19、、三、四象限,y随x的增大而增大。K0 y 0 x 图像通过一、二、四象限,y随x的增大而减小b0时,图像通过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0时,双曲线的两分支分别在第一、三象限,在每一个象限内,y随x增大而减小, 当k0时,双曲线的两支分别在第二、四象限,在每一个象限内,y随x增大而增大。|k|的几何意义:表达反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。正比例函数与反比例函数中的异号时两者的图象无交点,同号时它们有两个关于原点对称的交点且交点坐标为和3反比例函数的应用 第十章 图形的相似1、比例的基本性质:假如=,那么
20、= 假如=,那么= 在=中,我们把b叫做a和c的比例中项2、假如=,那么称线段AC被点B黄金分割,点B为线段AC的黄金分割点,AB与AC(或BC与AB)的比值约为0.618,这个比值称为黄金比。3相似图形:各角相应相等、各边相应成比例的两个三角形叫做相似三角形 两个相似三角形相应边的比值叫做它们的相似比类似地,假如两个边数相同的多边形的各角相应相等、各边相应成比例,那么这 多边形相似。相似多边形的相应边的比叫做相似比。4探索三角形相似的条件假如一个三角形的两个三角与另一个三角形的两个角相应相等,那么这两个三角形相似。平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角
21、形相似。假如一个三角形的两边与另一个三角形的两边相应成比例,并且夹角相等,那么这两个三角形相似。假如一个三角形的三条边与另一个三角形的三条边相应成比例,那么这两个三角形相似。5相似三角形的性质 相似三角形周长的比等于相似比 相似多边形周长的比等于相似比 相似三角形面积的比等于相似比的平方 相似多边形面积的比等于相似比的平方 相似三角形相应高的比等于相似比 相似三角形相应中线的比、相应角平分线的比都等于相似比6图形的位似:两个多边形不仅相似,并且相应顶点的连线相交于一点,相应边互相平行,像这样的两个图形叫做位似形,这个点叫做位似中心。性质:位似图形的相应点和位似中心在同一条直线上,它们到位似中心
22、的距离比等于相似比 位似多边形的相应边平行或共线运用位似形可以将一个图形放大或缩小。位似图形的中心可以在任意一点,但是位似图形也会随着位似中心的位变而位变注意1位似是一种具有位置关系的相似,所以两个图形是位似图形必是相似图形,而相似图形不一定是位似图形。 2两个位似图形的位似中心只有一个 3两个位似图形可以位于位似中心两侧,也也许位于位似中心同侧 4位似比就是相似比 5平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形位似7相似三角形的应用 在平行光线的照射下,物体所产生的影称为平行投影 在平行光线的照射下,不同物体的物高与其影长成比例 在点光源的照射下,物体所产生的影称为中心投影
23、 第十一章 图形与证明(一)1你的判断对吗2说理 对名称或术语的含义进行描述、做出规定,就是给出它们的定义 判断某一件事情的句子叫做命题(如:等角的余角相等是命题,而形状相同的三角形是全等三角形吗?就不是命题,由于并没有对某一件事情作出判断) 假如条件成立,那么结论成立,这样的命题叫做真命题 假如条件成立时,不能保证结论总是对的的,也就是说结论不成立,像这样的命题叫做假命题3用推理的方法证明真命题的过程叫做证明。通过证明的真命题称为定理 证明与图形有关的命题,一般有以下环节:(1) 根据命题,画出图形。(2) 根据命题,结合图形,写出已知、求证;已知部分是已知事项(即命题的条件),求证部分是论
24、证的事项(即命题的结论)(3) 写出证明过程 定理:内错角相等,两直线平行 两直线平行,内错角相等 两直线平行,同旁内角互补 三角形内角和定理 :三角形三个内角的和等于180 三角形内角和定理的推论:三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角 直角三角形的两个锐角互余4互逆命题:两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题 把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题 判断一个命题是假命题,只需举出一个反例就行了第十二章 结识概率1、等也许性:假如一个实验所有也许的结果有无穷多个,每次只出现其中的某个结果,并且每个结果出现的机会都同样,那么我们就称这个实验的结果具有等也许性。2、一般地,假如一个实验有n个等也许的结果,那么其中的m个结果之一出现时,事件A发生,那么事件A发生的概率为 P(A)=运用树状图或者表格可以帮助我们不反复、不漏掉地列出所有也许出现的结果。3、等也许条件下的概率(二)等也许条件下的几何概型(转盘、方格)的概率 把等也许条件下,实验结果无限的几何概型通过等积分割转化为古典概型。