《2022年人教版九级下《第章锐角三角函数》专项训练含答案 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版九级下《第章锐角三角函数》专项训练含答案 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 28 章 锐角三角函数专项训练专训 1求锐角三角函数值的常用方法名师点金:锐角三角函数刻画了直角三角形中边和角之间的关系,对于斜三角形,要把它转化为直角三角形求解 在求锐角的三角函数值时,首先要明确是求锐角的正弦值,余弦值还是正切值,其次要弄清是哪两条边的比直接用锐角三角函数的定义1如图,在 RtABC 中,CD 是斜边 AB 上的中线,若 CD5,AC6,(第 1 题)则 tan B 的值是()A.45B.35C.34D.432如图,在ABC 中,ADBC,垂足是 D,若 BC14,AD12,tan BAD34,求 sin C 的值(第 2 题)3如图,直线 y12x32与 x 轴交于点
2、 A,与直线 y2x 交于点 B.(1)求点 B 的坐标;(2)求 sinBAO 的值(第 3 题)利用同角或互余两角三角函数间的关系4若 A 为锐角,且 sin A32,则 cos A()A1 B.32C.22D.125若 为锐角,且 cos 1213,则 sin(90)()A.513B.1213C.512D.1256若 为锐角,且 sin2 cos230 1,则 _巧设参数7在 RtABC 中,C90,若 sin A45,则 tan B 的值为()A.43B.34C.35D.458已知,在 ABC 中,A,B,C 所对的边长分别为a,b,c,且 a,b,c 满足 b2(ca)(ca)若 5
3、b4c0,求 sin Asin B 的值利用等角来替换9如图,已知 RtABC 中,ACB90,CD 是斜边 AB 的中线,过点 A作 AECD,AE 分别与 CD,CB 相交于点 H,E 且 AH2CH,求 sin B 的值(第 9 题)专训 2同角或互余两角的三角函数关系的应用名师点金:1同角三角函数关系:sin2 cos2 1,tan sin cos.2互余两角的三角函数关系:sin cos(90 ),cos sin(90),tantan(90)1.同角间的三角函数的应用1已知sin Acos A4,求sin A3cos A4sin Acos A的值文档编码:CM2Y5Y1S9M6 HE
4、8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J
5、1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE
6、8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J
7、1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE
8、8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J
9、1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE
10、8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J12若 为锐角,sin cos 22,求 sin cos的值余角间的三角函数的应用3若 45 和 45 均为锐角,则下列关系式正确的是()Asin(45)sin(45)Bsin2(45)cos2(45)1 Csin2(45)sin2(45)1 Dcos2(45 )sin2(45 )1 4计算 tan 1 tan 2 tan 3 tan 88 tan 89 的值同角的三角函数间的关系在一元二次方程中
11、的应用5已知 sin cos 1225(为锐角),求一个一元二次方程,使其两根分别为sin 和 cos.6已 知 为 锐 角 且 sin 是 方 程 2x2 7x 3 0 的 一 个 根,求12sin cos 的值专训 3用三角函数解与圆有关问题名师点金:用三角函数解与圆有关的问题,是近几年中考热门命题内容,题型多样化;一般以中档题、压轴题形式出现,应高度重视一、选择题1如图,已知 ABC 的外接圆 O 的半径为 3,AC4,则 sin B()A.13B.34C.45D.23文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8
12、Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1
13、文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8
14、Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1
15、文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8
16、Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1
17、文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8
18、Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1(第 1 题)(第 2 题)2如图是以 ABC 的边 AB 为直径的半圆 O,点 C 恰好在半圆上,过 C 作CDAB 交 AB 于 D,已知 cosACD35,BC4,则 AC 的长为()A1 B.203C3 D.1633在 ABC 中,ABAC5,sin B45.O 过 B,C 两点,且 O 半径 r10,则 OA 的长为()A3 或 5 B5 C4 或 5 D4 4如图,在半径为6 cm 的O 中,点 A 是劣弧 BC 的中点,点 D 是优弧BC 上一点,且 D30.下
19、列四个结论:(第 4 题)OABC;BC6 3 cm;sinAOB32;四边形 ABOC 是菱形其中正确结论的序号是()ABCD二、填空题5如图,AB 是O 的直径,AB15,AC9,则 tanADC_.(第 5 题)文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK
20、7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y
21、1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK
22、7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y
23、1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK
24、7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y
25、1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1(第 6 题)6如图,直线 MN 与O 相切于点 M,MEEF 且 EFMN,则 cos E_.7如图,在半径为 5 的O 中,弦 AB6,点
26、 C 是优弧 AB 上的一点(不与A,B 重合),则 cos C 的值为 _(第 7 题)(第 8 题)8如图,在直角坐标系中,四边形OABC 是直角梯形,BCOA,P 分别与 OA,OC,BC 相切于点 E,D,B,与 AB 交于点 F,已知 A(2,0),B(1,2),则 tanFDE_.三、解答题9如图,RtABC 中,C90,AC5,tan B12,半径为 2 的C 分别交 AC,BC 于点 D,E,得到.(1)求证:AB 为C 的切线;(2)求图中阴影部分的面积(第 9 题)10如图,AB 是O 的直径,ABT 45,ATAB.(1)求证:AT 是O 的切线;(2)连接 OT 交O
27、于点 C,连接 AC,求 tanTAC 的值(第 10 题)11.如图,AB 是O 的直径,CD 与O 相切于点 C,与 AB 的延长线交于点 D,DEAD 且与 AC 的延长线交于点 E.文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:
28、CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U
29、6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:
30、CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U
31、6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:
32、CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U
33、6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1(1)求证:DCDE;(2)若 tanCAB12,AB3,求 BD 的长(第 11 题)12如图,以 ABC 的一边 AB 为直径的半圆与其他两边AC,BC 的交点分别为
34、 D,E,且.(1)试判断 ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC12,求 sinABD 的值(第 12 题)13如图,在四边形 ABCD 中,ABAD,对角线 AC,BD 交于点 E,点 O在线段 AE 上,O 过 B,D 两点,若 OC5,OB3,且 cosBOE35.求证:CB 是O 的切线(第 13 题)文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S
35、9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R
36、4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S
37、9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R
38、4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S
39、9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R
40、4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1答案专训11C2解:ADB
41、C,tan BAD BDAD.tan BAD34,AD12,34BD12,BD9.CDBCBD1495,在 RtADC 中,ACAD2CD21225213,sin CADAC1213.3解:(1)解方程组y12x32,y2x,得x1,y2,点 B 的坐标为(1,2)(第 3 题)(2)如图,过点 B 作 BCx 轴于点 C,由12x320,解得 x3,则 A(3,0),OA3,ABAC2BC22 5,sin BACBCAB22 555,即 sin BAO55.4D5.B6.30 7.B8解:b2(ca)(ca),b2c2a2,即 c2a2b2,ABC 是直角三角形5b4c0,5b4c,则bc4
42、5,设 b4k,c5k,那么 a3k.文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文
43、档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q
44、2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文
45、档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q
46、2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文
47、档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q
48、2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1sin Asin B3k5k4k5k75.9解:CD 是斜边 AB 的中线,CDADBD.DCBB.ACDDCB90,ACDCAH90,DCBCAHB.在 RtACH 中,AH2CH,AC5CH.sin Bsin CAHCH5CH55.专训21分析:本题可利用sin Acos A求解,在原式的分子、分母上同时除以cos
49、A,把原式化为关于sin Acos A的代数式,再整体代入求解即可也可直接由sin Acos A4,得到 sin A 与 cos A 之间的数量关系,代入式子中求值解:(方法 1)原式(sin A3cos A)cos A(4sin Acos A)cos Asin Acos A34sin Acos A1.sin Acos A4,原式43441117.(方法 2)sin Acos A4,sin A4cos A.原式4cos A3cos A44cos Acos Acos A17cos A117.2分析:要求 sin cos的值,必须利用锐角三角函数之间的关系找出它与已知条件的关系再求解解:sin c
50、os 22,(sin cos)212,即 sin2 cos2 2sin cos 12.12sin cos 12,即 2sin cos 12.(sin cos)2sin2 cos2 2sin cos 11232.又 为锐角,sin cos 0.文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE8Q2I5U6N1 ZK7R4J3R4J1文档编码:CM2Y5Y1S9M6 HE