2022年人教版高中数学必修2综合测试 .pdf

上传人:Q****o 文档编号:58181640 上传时间:2022-11-07 格式:PDF 页数:9 大小:185.10KB
返回 下载 相关 举报
2022年人教版高中数学必修2综合测试 .pdf_第1页
第1页 / 共9页
2022年人教版高中数学必修2综合测试 .pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年人教版高中数学必修2综合测试 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学必修2综合测试 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、必修 2 综合测试题一、选择题1点(1,1)到直线 xy10 的距离是()A21B23C22D2232过点(1,0)且与直线x 2y20 平行的直线方程是()A x2y10 Bx2y10 C2xy20 Dx2y10 3下列直线中与直线2xy 10 垂直的一条是()A 2xy10 Bx2y10 Cx2y10 Dx21y10 4已知圆的方程为x2y2 2x6y80,那么通过圆心的一条直线方程是()A 2xy10 B2xy10 C2xy10 D2xy1 0 5如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A三棱台、三棱柱、圆锥、圆台B三棱台、三棱

2、锥、圆锥、圆台C三棱柱、四棱锥、圆锥、圆台D三棱柱、三棱台、圆锥、圆台6 直线 3x4y50 与圆 2x22y24x2y10 的位置关系()(4(3(1(2A相离B相切C相交但直线不过圆心D相交且直线过圆心7过点 P(a,5)作圆(x 2)2(y1)24 的切线,切线长为32,则 a 等于()A 1 B 2 C 3 D0 8圆 A:x2y24x2y10 与圆 B:x2y2 2x6y10 的位置关系是()A相交B相离C相切D内含9已知点A(2,3,5),B(2,1,3),则|AB|()A6B26C2D2210 如果一个正四面体的体积为9 dm3,则其表面积S的值为()A 183 dm2B18 d

3、m2C123 dm2D12 dm211正六棱锥底面边长为a,体积为23a3,则侧棱与底面所成的角为()A30B 45C60D7512直角梯形的一个内角为45,下底长为上底长的23,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(52),则旋转体的体积为()A2B324C325 D 37二、填空题13 在 y轴上的截距为6,且与 y轴相交成 30 角的直线方程是_14 若圆 B:x2y2b0 与圆 C:x2y26x8y 160 没有公共点,则 b 的取值范围是_15已知 P1P2P3的三顶点坐标分别为P1(1,2),P2(4,3)和 P3(3,1),则这个三角形的最大边边长是_,最小边边长是_

4、文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y

5、6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C

6、7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4

7、Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q

8、5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z1

9、0C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1

10、Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q416已知三条直线ax2y80,4x3y10 和 2xy10 中没有任何两条平行,但它们不能构成三角形的三边,则实数 a 的值为 _三、解答题17 求斜率为43,且与坐标轴所围成的三角形的面积是6 的直线方程18.已知三角形三顶点A(4,0),B(8,10),C(0

11、,6),求:(1)AC 边上的高所在的直线方程;(2)过 A点且平行与BC的直线方程;19.如图,1111ABCDABC D是正四棱柱。(1)求证:BD 平面11ACC A(2)若 O是11AC的中点,求证:AO 平面1BDC文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z

12、10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L

13、1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3

14、Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T

15、1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P

16、9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:C

17、C3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q420.如图,在棱长为a的正方体ABCD

18、DCBA1111中,(1)证明1B D面11ABC;(2)求线AC到面11ABC的距离;(3)建立空间直角坐标系,试写出1,B B两点的坐标.21求半径为4,与圆 x2y24x2y40 相切,且和直线y0 相切的圆的方程文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C

19、7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4

20、Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q

21、5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z1

22、0C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1

23、Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y

24、3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q422如图所示,正四棱锥PABCD 中,O 为

25、底面正方形的中心,侧棱 PA 与底面 ABCD 所成的角的正切值为26(1)求侧面 PAD 与底面 ABCD 所成的二面角的大小;(2)若 E 是 PB 的中点,求异面直线PD 与 AE 所成角的正切值;(3)问在棱 AD 上是否存在一点F,使 EF侧面 PBC,若存在,试确定点 F 的位置;若不存在,说明理由(21)D B A C O E P 文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编

26、码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6

27、 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3

28、 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文

29、档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6

30、A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7

31、E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q

32、4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4参考答案一、选择题1D2A3 B4B5C6D7B8C9B 10 A11B 12D 二、填空题13y3 x6 或 y3 x614 4b 0或 b 641517,10 16 1三、解答题17解:设所求直线的方程为y43xb,令 x 0,得 yb;令 y0,得 x34b,由已知,得2134bb 6,即32b26,解得 b 3故所求的直线方程是y43x3,即 3x4y12 018解:(1)直线 AC 的斜率 K=1-2它的高的斜率为23,因 C 此直线还过A(4,0),则方程为2-0=(x-4)3y,化简得 2x-3y

33、+14=0(2)直线 BC 的斜率 K=12过 A 点且平行与BC 的直线方程为1-0=(x-4)2y,化简得 x-2y-4=0 文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3

34、ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档

35、编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A

36、6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E

37、3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4

38、文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y

39、6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q419(1)1111ABCDABC D是正四棱柱1CC平面 ABCD BD 1CCABCD 是正方形,BD AC 又 AC,1CC平面1

40、1ACC A,且 AC1CC=C,BD平面11ACC A(2)连结 AO,设 AC 与 BD 交于点 E 则1OC平行且等于AE 四边形1AECO是平行四边形AO1ECAO平面1BDC20.解:(1)易证11AC面11DBB D,11AC1B D,同理可证1AB1B D,又11AC1AB=1A,1B D面11ABC.(2)线AC到面11ABC的距离即为点A到面11ABC的距离,也就是点1B到面11A BC的距离,记为h,在三棱锥111BBAC中有111111BBA CBA B CVV,即1111111133ABCAB CShSBB,33ah.(3)1(,0),(,)C a aC a a a21

41、解:由题意,所求圆与直线y0 相切,且半径为4,则圆心坐标为O1(a,4),O1(a,4)又已知圆 x2 y2 4x2y40 的圆心为 O2(2,1),半径为3,若两圆内切,则|O1O2|431即(a2)2(41)212,或(a2)2(41)212显然两方程都无解若两圆外切,则|O1O2|437文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3

42、 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文

43、档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6

44、A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7

45、E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q

46、4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5

47、Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10

48、C7E3 ZI6P9L1Y4Q4即(a2)2(41)272,或(a2)2(41)272解得 a2 2 10,或 a2 26 所求圆的方程为(x2 210)2(y4)216 或(x22 10)2(y4)216;或(x226)2(y4)216 或(x226)2(y4)21622解:(1)取 AD 中点 M,连接 MO,PM,依条件可知ADMO,ADPO,则 PMO 为所求二面角PADO 的平面角 PO面 ABCD,PAO 为侧棱 PA与底面 ABCD 所成的角tanPAO26设 AB a,AO22a,POAO tanPOA23a,tanPMOMOPO3 PMO60(2)连接 AE,OE,OEPD,

49、OEA 为异面直线PD 与 AE所成的角AOBD,AOPO,AO平面 PBD又 OE平面 PBD,AOOEM D B A C O E P(第 21 题(1)M D B A C O E P(第 21 题(2)文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6

50、P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:CC3Y3Q5Y6A6 HZ5T1Z10C7E3 ZI6P9L1Y4Q4文档编码:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁