《【精品】九年级数学下册 29 直线与圆的位置关系小结与复习课件 (新版)冀教版精品ppt课件.ppt》由会员分享,可在线阅读,更多相关《【精品】九年级数学下册 29 直线与圆的位置关系小结与复习课件 (新版)冀教版精品ppt课件.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册 29 直线与圆的位置关系小结与复习课件(新版)冀教版一、点与圆的位置关系A AB BC C点与圆的位点与圆的位置关系置关系点到圆心的距离点到圆心的距离d d与圆的半径与圆的半径r r之间关系之间关系点在圆外点在圆外点在圆上点在圆上点在圆内点在圆内O Od dr rdrdrd=rd=rdrdr要点梳理要点梳理二、直线和圆的位置关系直线与圆的位置关系圆心与直线的距离d与圆的半径r的关系直线名称直线与圆的交点个数相离相切相交ldrdrdr0 0d=rd=r切线1 1drdr割线2 2drdrd=rd=r1 1三、切线的判定与性质1.切线的判定一般有三种方法:a.定义法:和圆有唯一的一
2、个公共点b.距离法:d=rc.判定定理:过半径的外端且垂直于半径四、三角形的内切圆及内心1.与三角形各边都相切的圆叫做三角形的内切圆.2.三角形内切圆的圆心叫做三角形的内心.3.这个三角形叫做圆的外切三角形.4.三角形的内心就是三角形的三个内角角平分线的交点.ACIDEF三角形的内心到三角形的三边的距离相等.重 要 结 论只适合于直角三角形五、正多边形和圆OCDABM半径R圆心角弦心距r弦a圆心中心角ABCDEFO半径R边心距r中心类比学习圆内接正多边形外接圆的圆心正多边形的中心外接圆的半径正多边形的半径每 一 条 边 所对 的 圆 心 角正多边形的中心角边心距正多边形的边心距1.概念正多边形
3、的内角和=中心角=正多边形的有关概念及性质2.计算公式考点一 点或直线与圆的位置关系 例1 如图所示,已知NON=30,P是ON上的一点,OP=5,若以P点为圆心,r为半径画圆,使射线OM与P只有一个公共点,求r的值或取值范围.考点讲练考点讲练解:当射线OM与P相切时,射线OM与P只有一个公共点.过点P作PAOM于A,如图1所示.在RtAOP中,r=PA=OPsinPOA=2.5().图1 当射线OM与P相交且点O在P内时,射线OM与P只有一个公共点.如图2所示.射线OM与P相交,则r2.5 又点O在P内,则rOP,即r5 综合、可得r5.综上所述,当射线OM与P只有一个公共点时,r=2.5或
4、r5.图2 本题之类的题目中,常因混淆了“直线与圆只有一个交点”和“线段与圆只有一个交点”或“射线与圆只有一个交点”的区别.实际上,当直线与圆只有一个交点时,直线与圆一定相切,而线段与圆只有一个交点或射线与圆只有一个交点时,它们与圆的位置关系可能相切,也可能是相交.方法总结1.如图,直线l:y=x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作M,当M与直线l相切时,则m的值为_ 针对训练例2 如图,以ABC的边AB为直径的O交边AC于点D,且过点D的切线DE平分边BC.问:BC与O是否相切?解:BC与O相切理由:连接OD,BD,DE切O于D,AB为
5、直径,EDOADB90.又DE平分CB,DE2(1)BCBE.EDBEBD.又ODBOBD,ODBEDB90,OBDDBE90,即ABC90.BC与O相切考点二 切线的性质与判定 2.已知:如图,PA,PB是O的切线,A、B为切点,过 上的一点C作O的切线,交PA于D,交PB于E.(1)若P70,求DOE的度数;(2)若PA4 cm,求PDE的周长针对训练解:(1)连接OA、OB、OC,O分别切PA、PB、DE于点A、B、C,OAPA,OBPB,OCDE,ADCD,BECE,OD平分AOC,OE平分BOC.DOE2(1)AOB.PAOB180,P70,DOE55.(2)O分别切PA、PB、DE
6、于A、B、C,ADCD,BECE.PDE的周长PDPEDE PDADBEPE2PA8(cm)考点三 圆内接正多边形例3 如图所示,在正方形ABCD内有一条折线段,其中AEEF,EFFC,已知AE=6,EF=8,FC=10,求图中阴影部分的面积.【解析】观察图形看出,因为四边形ABCD是正方形,所以AC是圆的直径.由于AE,CF都与EF垂直,所以AE与CF平行,所以可以把CF平移到直线AE上,如果点E,F重合时,点C到达点CC的位置,则构造出一个直角三角形ACC,在这个直角三角形中利用勾股定理,即可求得正方形ABCD的外接圆的半径,进而求得阴影部分的面积.解:将线段FC平移到直线AE上,此时点F
7、与点E重合,点C到达点C的位置.连接AC,如图所示.根据平移的方法可知,四边形EFCC是矩形.AC=AE+EC=AE+FC=16,CC=EF=8.在RtACC中,得正方形ABCD外接圆的半径为正方形ABCD的边长为 当图中出现圆的直径时,一般方法是作出直径所对的圆周角,从而利用“直径所对的圆周角等于 ”构造出直角三角形,为进一步利用勾股定理或锐角三角函数提供了条件.方法总结4.如图,正六边形ABCDEF内接于半径为5的O,四边形EFGH是正方形求正方形EFGH的面积;连接OF、OG,求OGF的度数针对训练解:正六边形的边长与其半径相等,EF=OF=5.四边形EFGH是正方形,FG=EF=5,正
8、方形EFGH 的面积是25.正六边形的边长与其半径相等,OFE=600.正方形的内角是900,OFG=OFE+EFG=600+900=1500.由得OF=FG,OGF=(1800-OFG)=(1800-1500)=150.考点四 有关圆的综合性题目 例4 如图,在平面直角坐标系中,P经过x轴上一点C,与y轴分别相交于A,B两点,连接AP并延长分别交P,x轴于点D,E,连接DC并延长交y轴于点F,若点F的坐标为(0,1)点D的坐标为(6,1).(1)求证:CD=CF.(2)判断P与x轴的位置关系,并说明理由.(3)求直线AD的函数表达式.解:(1)证明:过点D作DHx轴于H,则CHD=COF=9
9、0,如图所示.点F(0,1),点D(6,-1),DH=OF=1.FCO=DCH,FOCDHCCD=CF.(2)P与x轴相切.理由如下:连接CP,如图所示.AP=PD,CD=CF,CPAF。PCE=AOC=90.P与轴相切(3)由(2)可知CP是ADF的中位线.AF=2CP.AD=2CP,AD=AF.连接BD,如图所示.AD为P的直径,ABD=90.BD=OH=6,OB=DH=OF=1.设AD=x,则AB=AFBF=ADBF=AD(OB+OF)=x2.在RtABD中,由勾股定理,得AD2=AB2+BD2,即x2=(x2)2+62,解得 x=10.OA=AB+OB=8+1=9.点A(0,9).设直线AD的函数表达式为y=kx+b,把点A(0,9),D(6,1)代入,得 ,解得 ,直线AD的的函数表达式为 .圆与圆有关的位置关系正多边形和圆点和圆的位置关系切线的判定与性质直线和圆的位置关系等分圆三角形的内切圆课堂小结课堂小结中心角及内角和的计算 见学练优河北中考热点专练课后作业课后作业