《专题一等腰三角形的存在性问题.doc》由会员分享,可在线阅读,更多相关《专题一等腰三角形的存在性问题.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题训练一 等腰三角形的存在性问题专题攻略如果ABC是等腰三角形,那么存在ABAC,BABC,CACB三种情况。已知腰长(两定一动):分别以两腰的顶点为圆心,腰长为半径画圆;已知底边(两定一动:)画底边的垂直平分线。解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快。几何法一般分三步:分类、画图、计算。代数法一般也分三步:罗列三边长,分类列方程,解方程并检验。针对训练1、如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果DOP是等腰三角形,求点P的坐标。2、 如图,直线y=3x+3交x轴于A点,交y轴于B点,过A
2、、B两点的抛物线交x轴于另一点C(3,0).(1)、求A、B的坐标;(2)、求抛物线的解析式;(3)在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.3、如图,在矩形ABCD中,AB6,BC8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动。在P、Q两点移动过程中,当PQC为等腰三角形时,求t的值。4、如图,直线y2x2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果AP
3、Q是等腰三角形,求点P的坐标5、如图所示,矩形ABCD中,AB=4,BC=4,点E是折线段ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点在点E运动的过程中,使PCB为等腰三角形的点E的位置共有( )个。A、2 B、3 C、4 D、5 6、如图,在ABC中,ABAC10,BC16,DE4动线段DE(端点D从点B开始)沿BC以每秒1个单位长度的速度向点C运动,当端点E到达点C时运动停止过点E作EF/AC交AB于点F(当点E与点C重合时,EF与CA重合),联结DF,设运动的时间为t秒(t0)(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,DEF能否为等
4、腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积7、如图,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由5(11湖州24)如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D(1)求点D的坐标(用含m的代数式
5、表示);(2)当APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2)当点P从O向C运动时,点H也随之运动请直接写出点H所经过的路长(不必写解答过程) 图1 图26(10南通27)如图,在矩形ABCD中,ABm(m是大于0的常数),BC8,E为线段BC上的动点(不与B、C重合)连结DE,作EFDE,EF与射线BA交于点F,设CE=x,BFy(1)求y关于x的函数关系式; (2)若m8,求x为何值时,y的值最大,最大值是多少?(3)若,要使DEF为等腰三角形,m的值应为多少?两年模拟7(2019年福州市初中毕业班质量检查第
6、21题)如图,在ABC中,ABAC10,BC16,DE4动线段DE(端点D从点B开始)沿BC以每秒1个单位长度的速度向点C运动,当端点E到达点C时运动停止过点E作EF/AC交AB于点F(当点E与点C重合时,EF与CA重合),联结DF,设运动的时间为t秒(t0)(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积8(宁波七中2019届保送生推荐考试第26题)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB3,BC,直线
7、y经过点C,交y轴于点G(1)点C、D的坐标分别是C( ),D( );(2)求顶点在直线y上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)平移后是否存在这样的抛物线,使EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由 自编原创9如图,已知ABC中,ABAC6,BC8,点D是BC边上的一个动点,点E在AC边上,ADEB设BD的长为x,CE的长为y(1)当D为BC的中点时,求CE的长;(2)求y关于x的函数关系式,并写出x的取值范围;(3)如果ADE为等腰三角形,求x的值 备用图 备用图参考答
8、案:1因为D(3,4),所以OD5,如图1,当PDPO时,作PEOD于E在RtOPE中,所以此时点P的坐标为如图2,当OPOD5时,点P的坐标为(5,0)如图3,当DODP时,点D在OP的垂直平分线上,此时点P的坐标为(6,0) 第1题图1 第1题图2 第1题图32在RtABC中,.因此.在PQC中,CQt,CP102t. 第2题图1 第2题图2 第2题图3如图1,当时,解得(秒).如图2,当时,过点Q作QMAC于M,则CM.在RtQMC中,解得(秒).如图3,当时,过点P作PNBC于N,则CN.在RtPNC中,解得(秒).综上所述,当t为时,PQC为等腰三角形.3由y2x2得,A(1,0),
9、B(0,2)所以OA1,OB2如图,由AOBQOP得,OPOQOBOA21设点Q的坐标为(0,m),那么点P的坐标为(2m,0)因此AP2(2m1)2,AQ2m21,PQ2m2(2m)25m2当APAQ时,AP2AQ2,解方程(2m1)2m21,得或所以符合条件的点P不存在当PAPQ时,PA2PQ2,解方程(2m1)25m2,得所以当QAQP时,QA2QP2,解方程m215m2,得所以 第3题图4(12临沂26)(1)如图,过点B作BCy轴,垂足为C在RtOBC中,BOC30,OB4,所以BC2,所以点B的坐标为(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为yax(x4),代
10、入点B,解得 所以抛物线的解析式为(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线当BPBO4时,BP216所以解得当PBPO时,PB2PO2所以解得综合、,点P的坐标为 第4题图5(11湖州24)(1)因为PC/DB,所以因此PMDM,CPBD2m所以AD4m于是得到点D的坐标为(2,4m)(2)在APD中,当APAD时,解得(如图1)当PAPD时,解得(如图2)或(不合题意,舍去)当DADP时,解得(如图3)或(不合题意,舍去)综上所述,当APD为等腰三角形时,m的值为,或 第5题图1 第5题图2 第5题图
11、3另解第(2)题解等腰三角形的问题,其中、用几何说理的方法,计算更简单:如图1,当APAD时,AM垂直平分PD,那么PCMMBA所以因此,如图2,当PAPD时,P在AD的垂直平分线上所以DA2PO因此解得(3)点H所经过的路径长为思路是这样的:如图4,在RtOHM中,斜边OM为定值,因此以OM为直径的G经过点H,也就是说点H在圆弧上运动运动过的圆心角怎么确定呢?如图5,P与O重合时,是点H运动的起点,COH45,CGH90第5题图4 第5题图6(10南通27)(1)因为EDC与FEB都是DEC的余角,所以EDCFEB又因为CB90,所以DCEEBF因此,即整理,得y关于x的函数关系为(2)如图
12、1,当m8时,因此当x4时,y取得最大值为2(3) 若,那么整理,得解得x2或x6要使DEF为等腰三角形,只存在EDEF的情况因为DCEEBF,所以CEBF,即xy将xy 2代入,得m6(如图2);将xy 6代入,得m2(如图3)第6题图1 第6题图2 第6题图37(1), (2)DEF中,DEFC是确定的如图1,当DEDF时,即解得如图2,当EDEF时,解得如图3,当FDFE时,即解得,即D与B重合第7题图1 第7题图2 第7题图3(3)MN是FDE的中位线,MN/DE,MN2,MN扫过的形状是平行四边形如图4,运动结束,N在AC的中点,N到BC的距离为3;如图5,运动开始,D与B重合,M到
13、BC的距离为所以平行四边形的高为,面积为 第7题图4 第7题图58(1), (2)顶点E在AB的垂直平分线上,横坐标为,代入直线y,得设抛物线的解析式为,代入点,可得所以物线的解析式为 (3)由顶点E在直线y上, 可知点G的坐标为,直线与y轴正半轴的夹角为30, 即EGF30设点E的坐标为,那么EG2m,平移后的抛物线为所以点F的坐标为如图1,当GEGF时,yFyGGE2m,所以解得m0或m0时顶点E在y轴上,不符合题意此时抛物线的解析式为如图2,当EFEG时,FG,所以解得m0或此时抛物线的解析式为当顶点E在y轴右侧时,FEG为钝角,因此不存在FEFG的情况第8题图1 第8题图29(1)当D为BC的中点时,ADBC,DEAC,CE (2)如图1,由于ADCADE1,ADCB2,ADEB,所以12又因为ABAC,所以CB所以DCEABD因此,即整理,得x的取值范围是0x8(3)如图1,当DADE时,DCEABD因此DCAB,8x6解得x2 如图2,当ADAE时,D与B重合,E与C重合,此时x0 如图3,当EAED时,DAEADEBC,所以DACABC因此解得 第9题图1 第9题图2 第9题图3第 11 页