《常见递推数列通项公式的求法典型例题及习题.doc》由会员分享,可在线阅读,更多相关《常见递推数列通项公式的求法典型例题及习题.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、常见递推数列通项公式的求法典型例题及习题【典型例题】例1 型。(1)时,是等差数列,(2)时,设 比较系数: 是等比数列,公比为,首项为 例2 型。(1)时,若可求和,则可用累加消项的方法。例:已知满足,求的通项公式。解: 对这()个式子求和得: (2)时,当则可设 解得:, 是以为首项,为公比的等比数列 将A、B代入即可(3)(0,1)等式两边同时除以得令 则 可归为型例3 型。(1)若是常数时,可归为等比数列。(2)若可求积,可用累积约项的方法化简求通项。例:已知:,()求数列的通项。解: 例4 型。考虑函数倒数关系有 令 则可归为型。 练习:1. 已知满足,求通项公式。解:设 是以4为首
2、项,2为公比为等比数列 2. 已知的首项,()求通项公式。解: 3. 已知中,且求数列通项公式。解: 4. 数列中,求的通项。解: 设 5. 已知:,时,求的通项公式。解:设 解得: 是以3为首项,为公比的等比数列 【模拟试题】1. 已知中,求。2. 已知中,()求。3. 已知中,()求。4. 已知中,()求。5. 已知中,其前项和与满足() (1)求证:为等差数列 (2)求的通项公式6. 已知在正整数数列中,前项和满足 (1)求证:是等差数列 (2)若,求的前n项和的最小值【试题答案】1. 解:由,得 2. 解:由得: 即是等比数列 3. 解:由得 成等差数列, 4. 解: () ()设即 是等差数列 5. 解:(1) 是首项为1,公差为2的等差数列 (2) 又 6. 解:(1) 时,整理得: 是正整数数列 是首项为2,公差为4的等差数列 (2) 为等差数列 当时,的最小值为