《3两因素试验资料的方差分析重点.doc》由会员分享,可在线阅读,更多相关《3两因素试验资料的方差分析重点.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三节 两因素试验资料的方差分析 两因素试验资料的方差分析是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。两因素试验按水平组合的方式不同,分为交叉分组和系统分组两类,因而对试验资料的方差分析方法也分为交叉分组方差分析和系统分组方差分析两种,现分别介绍如下。一、交叉分组资料的方差分析 设试验考察A、B两个因素,A因素分个水平,B因素分b个水平。所谓交叉分组是指A因素每个水平与B因素的每个水平都要碰到,两者交叉搭配形成b个水平组合即处理,试验因素A、B在试验中处于平等地位,试验单位分成b个组,每组随机接受一种处理,因而试验数据也按两因素两方向分组。这种试验以各处理是单独观测值还是有重复
2、观测值又分为两种类型。(一)两因素单独观测值试验资料的方差分析对于A、B两个试验因素的全部b个水平组合,每个水平组合只有一个观测值,全试验共有b个观测值,其数据模式如表6-20所示。表6-20两因素单独观测值试验数据模式 A因素 B因素合计xi.平均B1B2BjBbA1x11x12x1jx1bx1.A2x21x22x2jx2bx2.Aixi1xi2xijxibxi.Aaxa1xa2xajxabxa.合计x.jx.1x.2x.jx.bx.平均表6-20中,两因素单独观测值试验的数学模型为:(6-29)式中,为总平均数;i,j分别为Ai、Bj的效应,i=i-,j=j-,i、j分别为Ai、Bj观测值
3、总体平均数,且i=0,j=0;ij为随机误差,相互独立,且服从N(0,2)。交叉分组两因素单独观测值的试验,A因素的每个水平有b次重复,B因素的每个水平有次重复,每个观测值同时受到A、B两因素及随机误差的作用。因此全部b个观测值的总变异可以剖分为A因素水平间变异、B因素水平间变异及试验误差三部分;自由度也相应剖分。平方和与自由度的剖分式如下:(6-30)各项平方和与自由度的计算公式为矫正数总平方和A因素平方和B因素平方和(6-31)误差平方和SSe=SST-SSA-SSB总自由度dfT=ab-1A因素自由度dfA=a-1B因素自由度dfB=b-1误差自由度dfe=dfT-dfA-dfB=(a-
4、1)(b-1)相应均方为【例6.5】为研究雌激素对子宫发育的影响,现有4窝不同品系未成年的大白鼠,每窝3只,随机分别注射不同剂量的雌激素,然后在相同条件下试验,并称得它们的子宫重量,见表6-21,试作方差分析。表6-21各品系大白鼠不同剂量雌激素的子宫重量(g)品系(A) 雌激素注射剂量(mg/100g)(B)合计xi. 平均B1(0.2)B2(0.4)B3(0.8)A11122.3A2426811522575.0A3704.7A442638719264.0合计x.j26平均65.089.5120.0这是一个两因素单独观测值试验结果。A因素(品系)有4个水平,即=4;B因素(雌激素注射剂量)有
5、3个水平,即b=3,共有b=34=12个观测值。方差分析如下:1、计算各项平方和与自由度 根据公式(6-31)有:2、列出方差分析表,进行F检验 表6-22表6-21资料的方差分析表 变异来源 平方和 自由度 均方 F值 A因素(品系)6457.666732152.555623.77*B因素(剂量)6074.000023037.000033.54*误差543.3333690.5556总变异13075.000011根据df1=dfA=3,df2=dfe=6查临界F值,F0.01(3,6)=9.78;根据df1=dfB=2,df2=dfe=6查临界F值,F0.01(2,6)=10.92。因为A因素
6、的F值23.77F0.01(3,6),P0.01,差异极显著;B因素的F值33.54F0.01(2,6),P0.01,差异极显著。说明不同品系和不同雌激素剂量对大白鼠子宫的发育均有极显著影响,有必要进一步对A、B两因素不同水平的平均测定结果进行多重比较。3、多重比较 (1)不同品系的子宫平均重量比较各品系平均数多重比较表见表6-23。表6-23各品系子宫平均重量多重比较(q法)品系 平均数-64.0-75.0-104.7A1 122.358.3*47.3*17.6A3104.740.7*29.7*A275.011.0A4 64.0在两因素单独观测值试验情况下,因为A因素(本例为品系)每一水平的
7、重复数恰为B因素的水平数b,故A因素的标准误,此例b=3,MSe=90.5556,故根据dfe=6,秩次距k=2,3,4从附表5中查出=0.05和=0.01的临界q值,与标准误相乘,计算出最小显著极差LSR,结果见表6-24。表6-24q值及LSR值 dfe 秩次距k q0.05q0.01LSR0.05LSR0.01623.465.2419.0128.7934.346.3323.8434.7844.907.0326.9238.62将表6-23中各差数与表6-24中相应最小显著极差比较,作出推断。检验结果已标记在表6-23中。结果表明,A1、A3品系与A2、A4品系的子宫平均重量均有极显著的差异
8、;但A1与A3及A2与A4品系间差异不显著。(2)不同激素剂量的子宫平均重量比较B因素各剂量水平平均数比较表见表6-25。表6-25不同雌激素剂量的子宫平均重量多重比较(q法)雌激素剂量 平均数-65.0-89.5B3(0.8)120.055.0*30.5*B2(0.4)89.524.5*B1(0.2)65.0在两因素单独观测值试验情况下,B因素(本例为雌激素剂量)每一水平的重复数恰为A因素的水平数a,故B因素的标准误,此例=4,MSe=90.5556。故根据dfe=6,秩次距k=2,3查临界q值并与相乘,求得最小显著极差LSR,见表6-26。表6-26q值与LSR值 dfe 秩次距 q0.0
9、5q0.01LSR0.05LSR0.01623.465.2416.4624.9334.346.3320.6530.12将表6-25各差数与表6-26相应最小显著极差比较,作出推断,比较结果已标记在表6-25中。结果表明,注射雌激素剂量为0.8mg的大白鼠子宫重量极显著大于注射剂量为0.4mg和0.2mg的子宫重量,而后两种注射剂量的子宫重量间也有显著差异。在进行两因素或多因素的试验时,除了研究每一因素对试验指标的影响外,往往更希望研究因素之间的交互作用。例如,通过对畜禽所处环境的温度、湿度、光照、噪音以及空气中各种有害气体等对畜禽生长发育的影响有无交互作用的研究,对最终确定有利于畜禽生产的最佳
10、环境控制是有重要意义的。对畜禽的不同品种(品系)及其与饲料条件、各种环境因素互作的研究,有利于合理利用品种资源充分发挥不同畜禽的生产潜能。又如在饲料科学中,常常要研究各种营养成分间有无交互作用,从而找到最佳的饲料配方,这对于合理利用饲料原料提高饲养水平等都是非常有意义的。前面介绍的两因素单独观测值试验只适用于两个因素间无交互作用的情况。若两因素间有交互作用,则每个水平组合中只设一个试验单位(观察单位)的试验设计是不正确的或不完善的。这是因为:(1)在这种情况下,(6-31)式中SSe,dfe实际上是A、B两因素交互作用平方和与自由度,所算得的MSe是交互作用均方,主要反映由交互作用引起的变异。
11、(2)这时若仍按【例6.5】所采用的方法进行方差分析,由于误差均方值大(包含交互作用在内),有可能掩盖试验因素的显著性,从而增大犯型错误的概率。(3)因为每个水平组合只有一个观测值,所以无法估计真正的试验误差,因而不可能对因素的交互作用进行研究。因此,进行两因素或多因素试验时,一般应设置重复,以便正确估计试验误差,深入研究因素间的交互作用。(二)两因素有重复观测值试验的方差分析对两因素和多因素有重复观测值试验结果的分析,能研究因素的简单效应、主效应和因素间的交互作用(互作)效应。现介绍这三种效应的意义如下:1、简单效应(simpleeffect)在某因素同一水平上,另一因素不同水平对试验指标的
12、影响称为简单效应。如在表6-27中,在A1(不加赖氨酸)上,B2-B1=480-470=10;在A2(加赖氨酸)上,B2-B1=512-472=40;在B1(不加蛋氨酸)上,A2-A1=472-470=2;在B2(加蛋氨酸)上,A2-A1=512-480=32等就是简单效应。简单效应实际上是特殊水平组合间的差数。 表6-27日粮中加与不加赖、蛋氨酸雏鸡的增重(g)A1 A2 A2-A1平均 BB248051232496B2-B1104025平均475492172、主效应(maineffect)由于因素水平的改变而引起的平均数的改变量称为主效应。如在表6-27中,当A因素由A1水平变到A2水平时
13、,A因素的主效应为A2水平的平均数减去A1水平的平均数,即A因素的主效应=492-475=17同理B因素的主效应=496-471=25主效应也就是简单效应的平均,如(32+2)2=17,(40+10)2=25。3、交互作用(互作,interaction)在多因素试验中,一个因素的作用要受到另一个因素的影响,表现为某一因素在另一因素的不同水平上所产生的效应不同,这种现象称为该两因素存在交互作用。如在表6-27中:A在B1水平上的效应=472-470=2A在B2水平上的效应=512-480=32B在A1水平上的效应=480-470=10B在A2水平上的效应=512-472=40显而易见,A的效应随
14、着B因素水平的不同而不同,反之亦然。我们说A、B两因素间存在交互作用,记为AB。或者说,某一因素的简单效应随着另一因素水平的变化而变化时,则称该两因素存在交互作用。互作效应可由(A1B1+A2B2-A1B2-A2B1)/2来估计。表6-27中的互作效应为(470+512-480-472)/2=15所谓互作效应实际指的就是由于两个或两个以上试验因素的相互作用而产生的效应。如在表6-27中,A2B1-A1B1=472-470=2,这是添加赖氨酸单独作用的效应;A1B2-A1B1=480-470=10,这是添加蛋氨酸单独作用的效应,两者单独作用的效应总和是2+10=12;但是,A2B2-A1B1=5
15、12-470=42,而不是12;这就是说,同时添加赖氨酸、蛋氨酸产生的效应不是单独添加一种氨基酸所产生效应的和,而另外多增加了30,这个30是两种氨基酸共同作用的结果。若将其平均分到每种氨基酸头上,则各为15,即估计的互作效应。我们把具有正效应的互作称为正的交互作用;把具有负效应的互作称为负的交互作用;互作效应为零则称无交互作用。没有交互作用的因素是相互独立的因素,此时,不论在某一因素哪个水平上,另一因素的简单效应是相等的。关于无互作和负互作的直观理解,读者可将表6-27中,A2B2位置上的数值改为482和任一小于482的数后具体计算一下即可。下面介绍两因素有重复观测值试验结果的方差分析方法。
16、设A与B两因素分别具有与b个水平,共有b个水平组合,每个水平组合有n次重复,则全试验共有abn个观测值。这类试验结果方差分析的数据模式如表6-28所示。表6-28两因素有重复观测值试验数据模式 A因素 B因素 Ai合计xi. Ai平均B1 B2 Bb A1 x1jlx111x121x1b1x1. x112x122x1b2x11nx12nx1bnx1j.x11.x12.x1b.A2 x2jlx211x221x2b1x2. x212x222x2b2x21nx22nx2bnx2j.x21.x22.x2b.Aa xajlxa11xa21xab1xa. xa12xa22xab2xa1nxa2nxabnx
17、aj.xa1.xa2.xab.Bj合计x.j.x.1.x.2. x.b.xBj平均 表6-28中两因素有重复观测值试验的数学模型为:(6-32)其中,为总平均数;i为Ai的效应;j为Bj的效应;()ij为Ai与Bj的互作效应,,、分别为、观测值总体平均数;且,为随机误差,相互独立,且都服从N(0,2)。两因素有重复观测值试验结果方差分析平方和与自由度的剖分式为(6-33)其中,SSAB,dfAB为A因素与B因素交互作用平方和与自由度。若用SSAB,dfAB表示A、B水平组合间的平方和与自由度,即处理间平方和与自由度,则因处理变异可剖分为A因素、B因素及A、B交互作用变异三部分,于是SSAB、d
18、fAB可剖分为:(6-34)各项平方和、自由度及均方的计算公式如下:矫正数总平方和与自由度水平组合平方和与自由度(6-35)A因素平方和与自由度B因素平方和与自由度交互作用平方和与自由度误差平方和与自由度相应均方为【例6.6】为了研究饲料中钙磷含量对幼猪生长发育的影响,将钙(A)、磷(B)在饲料中的含量各分4个水平进行交叉分组试验。先用品种、性别、日龄相同,初始体重基本一致的幼猪48头,随机分成16组,每组3头,用能量、蛋白质含量相同的饲料在不同钙磷用量搭配下各喂一组猪,经两月试验,幼猪增重结果(kg)列于表6-29,试分析钙磷对幼猪生长发育的影响。本例A因素钙的含量分4个水平,即=4;B因素
19、磷的含量分4个水平,即b=4;共有=44=16个水平组合;每个组合重复数n=3;全试验共有=443=48个观测值。现对本例资料进行方差分析如下:表6-29不同钙磷用量(%)的试验猪增重结果(kg)B1(0.8)B2(0.6)B3(0.4)B4(0.2)Ai合计xi. Ai平均A1(1.0)x1j122.030.032.430.5324.927.126.527.526.527.024.426.027.025.1x1jl72.983.585.982.624.327.828.627.5A2(0.8)x2jl23.533.238.026.5350.129.225.828.535.524.027.030
20、.133.025.0x2j.76.391.8106.575.525.430.635.525.2A3(0.6)x3jl30.536.528.020.5332.427.726.834.030.522.525.533.524.619.5x3j.82.8104.083.162.527.634.727.720.8A4(0.4)x4jl34.529.027.518.5319.526.631.427.526.320.029.328.028.519.0x4j.95.284.582.357.531.728.227.419.2Bj合计x.j.327.2363.8357.8278.11326.9Bj平均27.330
21、.329.823.227.61、计算各项平方和与自由度 2、列出方差分析表,进行F检验 表6-30不同钙磷用量方差分析表 变异来源 平方和自由度均方F值钙(A)44.5106314.83673.22*磷(B)383.73563127.911927.77*互作(AB)406.6586945.18439.81*误差147.4133324.6067总变异982.318147查临界F值:F0.05(3,32)=2.90,F0.01(3,32)=4.47,F0.01(9,32)=3.02。因为,FAF0.05(3,32);FBF0.01(3,32);FABF0.01(9,32),表明钙、磷及其互作对幼猪
22、的生长发育均有显著或极显著影响。因此,应进一步进行钙各水平平均数间、磷各水平平均数间、钙与磷水平组合平均数间的多重比较和进行简单效应的检验。 3、多重比较 (1)钙含量(A)各水平平均数间的比较不同钙含量平均数多重比较表见表6-31。表6-31不同钙含量平均数比较表(q法)钙含量(%) 平均数-26.6? -27.1? -27.7A2(0.8)29.22.6*2.11.5A3(0.6)27.71.10.6A1(1.0)27.10.5A4(0.4)26.6因为A因素各水平的重复数为bn,故A因素各水平的标准误(记为)的计算公式为:此例,由dfe=32,秩次距k=2,3,4,从附表5中查出=0.0
23、5与=0.01的临界q值,乘以=0.6196,即得各LSR值,所得结果列于表6-32。表6-32q值与LSR值表 dfe 秩次距k q0.05q0.01LSR0.05LSR0.013222.883.881.782.4033.474.432.152.7443.834.782.372.96检验结果标记在表6-33中。(2)磷含量(B)各水平平均数间的比较不同磷含量平均数多重比较表见表6-33。表6-33不同磷含量平均数比较表(q法)磷含量(%) 平均数-23.2-27.3-29.8B2(0.6)30.37.1*3.0*0.5B3(0.4)29.86.6*2.5*B1(0.8)27.34.1*B4(
24、0.2)23.2因B因素各水平的重复数为,故B因素各水平的标准误(记为)的计算公式为:在本例,由于A、B两因素水平数相等,即=b=4,故。因而,A、B两因素各水平比较的LSR值是一样的,所以用表6-32的LSR值去检验B因素各水平平均数间差数的显著性,结果见表6-33。以上所进行的两项多重比较,实际上是A、B两因素主效应的检验。结果表明,钙的含量以占饲料量的0.8%(A2)增重效果最好;磷的含量以占饲料量的0.6%(B2)增重效果最好。若A、B因素交互作用不显著,则可从主效应检验中分别选出A、B因素的最优水平相组合,得到最优水平组合;若A、B因素交互作用显著,则应进行水平组合平均数间的多重比较
25、,以选出最优水平组合,同时可进行简单效应的检验。(3)各水平组合平均数间的比较因为水平组合数通常较大(本例=44=16),采用最小显著极差法进行各水平组合平均数的比较,计算较麻烦。为了简便起见,常采用T检验法。所谓T检验法,实际上就是以q检测法中秩次距k最大时的LSR值作为检验尺度检验各水平组合平均数间的差异显著性。因为水平组合的重复数为n,故水平组合的标准误(记为)的计算公式为:此例由dfe=32,k=16从附表5中查出=0.05、=0.01的临界q值,乘以=1.2392,得各LSR值,即以上述LSR值去检验各水平组合平均数间的差数,结果列于表6-34。表6-34各水平组合平均数比较表(T法
26、)水平 组合 均数 -19.220.8-24.3-25.2-25.4-27.4-27.5-27.6-27.7-27.8-28.2-28.6-30.6-31.7-34.7A2B335.516.3*14.7*11.2*10.3*10.1*8.1*8.0*7.9*7.8*7.7*7.3*6.9*4.93.80.8A3B234.715.5*13.9*10.4*9.5*9.3*7.3*7.2*7.1*7.0*6.9*6.56.14.13.0A4B131.712.5*10.9*7.4*6.56.34.34.24.14.03.93.53.11.1A2B230.611.4*9.8*6.35.45.23.23.
27、13.02.92.82.42.0A1B328.69.4*7.8*4.33.43.21.21.11.00.90.80.4A4B228.29.2*7.4*3.93.02.80.80.70.60.50.4A1B227.88.6*7.0*3.52.62.40.40.30.20.1A3B327.78.5*6.9*3.42.52.30.30.20.1A3B127.68.4*6.8*3.32.42.20.20.1A1B427.58.3*6.7*3.22.32.10.1A4B327.48.2*6.6*3.12.22.0A2B125.46.24.61.10.2A2B425.26.04.40.9A1B124.35
28、.13.5A3B420.81.6A4B419.2各水平组合平均数的多重比较结果表明,由于钙磷交互作用的存在,最优组合(即增重好的组合)并不是A2B2,而是A2B3,即钙含量0.8%和磷含量0.4%的组合增重效果最好。以上的比较结果告诉我们:当A、B因素的交互作用显著时,一般不必进行两个因素主效应的显著性检验(因为这时主效应的显著性在实用意义上并不重要),而直接进行各水平组合平均数的多重比较,选出最优水平组合。(4)简单效应的检验简单效应实际上是特定水平组合平均数间的差数。检验尺度仍为(3)中的LSR0.05=6.51,LSR0.01=7.65。A因素各水平上B因素各水平平均数间的比较A1水平(
29、1.0)B因素 平均数-24.3-27.5-27.8B3(0.4)28.64.31.10.8B2(0.6)27.83.50.3B4(0.2)27.53.2B1(0.8)24.3A2水平(0.8)B因素 平均数-25.2-25.4-30.6B3(0.4)35.510.3*10.1*4.9B2(0.6)30.65.45.2B1(0.8)25.40.2B4(0.2)25.2A3水平(0.6)B因素 平均数-20.8-25.4-27.7B2(0.6)34.713.9*7.1*7.0*B3(0.4)27.76.9*0.1B1(0.8)27.66.8*B4(0.2)20.8A4水平(0.4)B因素 平均数
30、-19.2-27.4-28.2B1(0.8)31.712.5*4.33.5B2(0.6)28.29.0*0.8B3(0.4)27.48.2*B4(0.2)19.2B因素各水平上A因素各水平平均数间的比较B1水平(0.8)A因素 平均数-24.3-25.4-27.6A4(0.4)31.77.4*6.34.1A3(0.6)27.63.32.2A2(0.8)25.41.1A1(1.0)24.3B2水平(0.6)A因素 平均数-27.8-28.2-30.6A3(0.6)34.76.9*6.54.1A2(0.8)30.62.82.4A4(0.4)28.20.4A1(1.0)27.8B3水平(0.4)A因
31、素 平均数-27.4-27.7-28.6A2(0.8)35.58.1*7.8*6.9*A1(1.0)28.61.20.9A3(0.6)27.70.3A4(0.4)27.4B4水平(0.2)A因素 平均数-19.2-20.8-25.2A1(1.0)27.58.3*6.7*2.3A2(0.8)25.26.04.4A3(0.6)20.81.6A4(0.4)19.2简单效应检验结果表明:当饲料中钙含量达1.0%时,磷含量各水平平均数间差异不显著;当饲料中钙含量为0.8%时,磷含量以0.4%为宜(但与磷含量为0.6%的差异不显著);当钙为0.6%时,磷以0.6%为好,且有小猪的生长发育对磷含量的变化反应
32、比较敏感的迹象;当钙含量为0.4%时,磷以0.8%为好(但与磷含量为0.6%、0.4%的差异不显著);就试验中所选择的钙磷含量水平来看,有一种随着饲料中钙含量的减少,要求磷含量增加的趋势。当磷含量0.8%时,钙以0.4%为好,但除显著高于钙为1.0%的水平外,与钙为0.6%、0.8%的差异不显著;当磷的水平为0.6%时,钙的水平也以0.6%为好,但除显著高于钙为1.0%的水平外,与钙为0.4%、0.8%的差异不显著;磷含量0.4%时,钙含量以0.8%为好;磷含量为0.2%时,钙水平达到1.0%效果较好,但与钙为0.8%的差异不显著。同样也呈现一种随着磷含量降低,钙水平应提高的趋势。综观全试验,以A2B3(钙0.8%,磷0.4%)效果最好,钙磷含量均高或均低效果都差。第 25 页