椭圆和双曲线的必背的经典结论.docx

上传人:美****子 文档编号:57984262 上传时间:2022-11-06 格式:DOCX 页数:9 大小:194.54KB
返回 下载 相关 举报
椭圆和双曲线的必背的经典结论.docx_第1页
第1页 / 共9页
椭圆和双曲线的必背的经典结论.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《椭圆和双曲线的必背的经典结论.docx》由会员分享,可在线阅读,更多相关《椭圆和双曲线的必背的经典结论.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、椭圆与双曲线的必背的经典结论椭 圆1. 点P处的切线PT平分PF1F2在点P处的外角.2. PT平分PF1F2在点P处的外角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5. 假设在椭圆上,那么过的椭圆的切线方程是.6. 假设在椭圆外 ,那么过Po作椭圆的两条切线切点为P1、P2,那么切点弦P1P2的直线方程是.7. 椭圆 (ab0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,那么椭圆的焦点角形的面积为.8. 椭圆ab0的焦半径公式:9. 设过椭圆焦点

2、F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 与AQ分别交相应于焦点F的椭圆准线于M、N两点,那么MFNF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P与A2Q交于点M,A2P与A1Q交于点N,那么MFNF.11. AB是椭圆的不平行于对称轴的弦,M为AB的中点,那么,即。12. 假设在椭圆内,那么被Po所平分的中点弦的方程是.13. 假设在椭圆内,那么过Po的弦中点的轨迹方程是.双曲线1. 点P处的切线PT平分PF1F2在点P处的内角.2. PT平分PF1F2在点P处的内角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的

3、圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.内切:P在右支;外切:P在左支5. 假设在双曲线a0,b0上,那么过的双曲线的切线方程是.6. 假设在双曲线a0,b0外 ,那么过Po作双曲线的两条切线切点为P1、P2,那么切点弦P1P2的直线方程是.7. 双曲线a0,bo的左右焦点分别为F1,F 2,点P为双曲线上任意一点,那么双曲线的焦点角形的面积为.8. 双曲线a0,bo的焦半径公式:( , 当在右支上时,,.当在左支上时,,9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结A

4、P 与AQ分别交相应于焦点F的双曲线准线于M、N两点,那么MFNF.10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P与A2Q交于点M,A2P与A1Q交于点N,那么MFNF.11. AB是双曲线a0,b0的不平行于对称轴的弦,M为AB的中点,那么,即。12. 假设在双曲线a0,b0内,那么被Po所平分的中点弦的方程是.13. 假设在双曲线a0,b0内,那么过Po的弦中点的轨迹方程是.椭圆与双曲线的对偶性质-会推导的经典结论椭 圆1. 椭圆abo的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过椭圆 (a

5、0, b0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,那么直线BC有定向且常数.3. 假设P为椭圆ab0上异于长轴端点的任一点,F1, F 2是焦点, , ,那么.4. 设椭圆ab0的两个焦点为F1、F2,P异于长轴端点为椭圆上任意一点,在PF1F2中,记, ,,那么有.5. 假设椭圆ab0的左、右焦点分别为F1、F2,左准线为L,那么当0e时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6. P为椭圆ab0上任一点,F1,F2为二焦点,A为椭圆内一定点,那么,当且仅当三点共线时,等号成立.7. 椭圆与直线有公共点的充要条件是.8. 椭圆ab0,O为坐标原

6、点,P、Q为椭圆上两动点,且.1;2|OP|2+|OQ|2的最大值为;3的最小值是.9. 过椭圆ab0的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,那么.10. 椭圆 ab0,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 那么.11. 设P点是椭圆 ab0上异于长轴端点的任一点,F1、F2为其焦点记,那么(1).(2) .12. 设A、B是椭圆 ab0的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,那么有(1).(2) .(3) .13. 椭圆 ab0的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上

7、,且轴,那么直线AC经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). 注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质-会推导的经典结论双曲线1. 双曲线a0,

8、b0的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过双曲线a0,bo上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,那么直线BC有定向且常数.3. 假设P为双曲线a0,b0右或左支上除顶点外的任一点,F1, F 2是焦点, , ,那么或.4. 设双曲线a0,b0的两个焦点为F1、F2,P异于长轴端点为双曲线上任意一点,在PF1F2中,记, ,,那么有.5. 假设双曲线a0,b0的左、右焦点分别为F1、F2,左准线为L,那么当1e时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6. P为双曲线a0,b0上任一点

9、,F1,F2为二焦点,A为双曲线内一定点,那么,当且仅当三点共线且与在y轴同侧时,等号成立.7. 双曲线a0,b0与直线有公共点的充要条件是.8. 双曲线ba 0,O为坐标原点,P、Q为双曲线上两动点,且.1;2|OP|2+|OQ|2的最小值为;3的最小值是.9. 过双曲线a0,b0的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,那么.10. 双曲线a0,b0,A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点, 那么或.11. 设P点是双曲线a0,b0上异于实轴端点的任一点,F1、F2为其焦点记,那么(1).(2) .12. 设A、B是双曲线a0,b0的长

10、轴两端点,P是双曲线上的一点,, ,,c、e分别是双曲线的半焦距离心率,那么有(1).(2) .(3) .13. 双曲线a0,b0的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,那么直线AC经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.第 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁