(5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf

上传人:刘静 文档编号:57972777 上传时间:2022-11-06 格式:PDF 页数:13 大小:918.54KB
返回 下载 相关 举报
(5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf_第1页
第1页 / 共13页
(5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《(5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf》由会员分享,可在线阅读,更多相关《(5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、In memory Computing-Spark2Data Processing System Architecture Computing algorithmComputing ModelData processing systemComputing Platform&EngineComputing Platforms that provide various development kits and operating environmentsData storing systemData application systemComputing Models for different

2、types of data,such as 1.Batch Processing Model for massive data,MapReduce2.Stream Computing model for dynamic data streams,3.Large-scale concurrent processing(MPP)model for structured data4.large-scale physical memory In-memory Computing model;5.Data Flow Graph model;Computing Engine Hadoop,Spark,St

3、orm,etc34L3-SparkSpark was initially started by Matei Zaharia at UC Berkeleys AMP Lab in 2009,and open sourced in 2010.In 2013,donated to the Apache Software Foundation.one of the most active open source big data projects,Top-Level Apache ProjectParallel processing framework based on the memory comp

4、uting model.It can be built on the Hadoop platform and use the HDFS file system to store data,but a Resilient Distributed dataset(RDD)architecture is built on top of the file system for Supports efficient Distributed Memory Computing.5What is Spark6RDD(Resilient Distributed Dataset)78Spark Driver(ru

5、nning on the Master node,there is also a mode of running on a Worker node)and Executor(running on the Worker node):Driver is responsible for converting the computing tasks of the application into a directed acyclic graph(DAG)Executor is responsible for completing the calculation and data storage on

6、the worker node On each worker,the Executor generates task threads for each data partition distributed to it to complete parallel calculations.9Features of Sparktransform the whole dataset but not individual element on the datasetsave the result of RDD evaluationstores the intermediate result so tha

7、t we can use it further RDDs are the huge collection of various data items,cannot fit into a single node and must be partitioned across various nodesCreated data can be retrieved anytime but its value cant be changedRDDs track data lineage information to reconstruct lost data automaticallyIt doesnt

8、compute the result immediately means that execution does not start until an action is triggered.When we call some operation in RDD for transformation,it does not execute immediately.Computed results are stored in distributed memory(RAM)instead of stable storage(disk).10Spark Components 11Spark Advantages Fast processing Flexibility In-memory computing Real-time processing Better analytics12Spark ecosystemQuestions?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁