《2022年高中物理-复习知识点2.docx》由会员分享,可在线阅读,更多相关《2022年高中物理-复习知识点2.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 学问点大全3-3 复习 一、分子动理论1、物体是由大量分子组成的微观量:分子体积V 0、分子直径d、分子质量m0M 、物质密度;MA宏观量:物质体积V、摩尔体积VA、物体质量m、摩尔质量mM联系桥梁:阿伏加德罗常数(NA6.02 10 23mol1)VVA( 1)分子质量:m 0mMVA( 2)分子体积:V0VVA NANNNANNA(对气体, V0 应为气体分子占据的空间大小)( 3)分子大小: 数量级 10-10m 1 球体模型V 0 V N AA M N A 4 3 d 2 3 直径 d 3 6V 0(固、液体一般用此模型)油膜法估测分子
2、大小:d V S 单分子油膜的面积,V滴到水中的纯油酸的体积 S2 立方体模型d = 3 V 0(气体一般用此模型;对气体,d 应懂得为相邻分子间的平均距离)留意:固体、液体分子可估算分子质量、大小 认为分子一个挨一个紧密排列 ;气体分子间距很大,大小可忽视,不行估算大小,只能估算气体分子所占空间、分子质量;( 4)分子的数量:NnNAmNAVNA或者NnNAVNAVNAMMVAM2、分子永不停息地做无规章运动( 1)扩散现象:不同物质彼此进入对方的现象;温度越高,扩散越快;直接说明白组成物体的分子总是不停地 做无规章运动,温度越高分子运动越猛烈;(2)布朗运动:悬浮在液体中的固体微粒的无规章
3、运动;发生缘由是固体微粒受到包围微粒的液体分子无规章运动地撞击的不平稳性造成的因而间接说明白液体 分子在永不停息地做无规章运动 布朗运动是固体微粒的运动而不是固体微粒中分子的无规章运动布朗运动反映液体分子的无规章运动但不是液体分子的运动课本中所示的布朗运动路线,不是固体微粒运动的轨迹微粒越小,布朗运动越明显;温度越高,布朗运动越明显3、分子间存在相互作用的引力和斥力分子间引力和斥力肯定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力分子力的表现及变化,对于曲线留意两个距离,即平稳距离 r 0(约 1010m)与 10r
4、0;()当分子间距离为 r0 时,分子力为零;()当分子间距 rr0 时,引力大于斥力,分子力表现为引力;当分子间距离由 r0 增大时,分子力先增大后减 小()当分子间距rr0 时,斥力大于引力,分子力表现为斥力;当分子间距离由r0 减小时,分子力不断增大二、温度和内能1、统计规律:单个分子的运动都是不规章的、带有偶然性的;大量分子的集体行为受到统计规律的支配;多数名师归纳总结 - - - - - - -第 1 页,共 4 页精选学习资料 - - - - - - - - - 学问点大全分子速率都在某个值邻近,满意“ 中间多,两头少” 的分布规律;2、分子平均动能:物体内全部分子动能的平均值;温
5、度是分子平均动能大小的标志;温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同)EPr 0x 3、分子势能1一般规定无穷远处分子势能为零,2分子力做正功分子势能削减,分子力做负功分子势能增加;3分子势能与分子间距离r0关系当 rr0 时, r 增大,分子力为引力,分子力做负功分子势能增大;0 当 rr0 时, r 减小,分子力为斥力,分子力做负功分子势能增大;当 r=r 0(平稳距离)时,分子势能最小(为负值)3打算分子势能的因素:从宏观上看:分子势能跟物体的体积有关;从微观上看:分子势能跟分子间距离 r 有关;(留意体积增大,分子势能不肯定增大)4、内能:物体内全部分子无
6、规章运动的动能和分子势能的总和 E内 N E K E P( 1)内能是状态量(2)内能是宏观量,只对大量分子组成的物体有意义,对个别分子无意义;( 3)物体的内能由物质的量(分子数量)、温度(分子平均动能)、体积(分子间势能)打算,与物体的宏观机械运动状态无关内能与机械能没有必定联系三、热力学定律和能量守恒定律1、转变物体内能的两种方式:做功和热传递;等效不等质:做功是内能与其他形式的能发生转化;热传递是不同物体(或同一物体的不同部分)之间内能的转移,它们转变内能的成效是相同的;概念区分:温度、内能是状态量,热量和功就是过程量,热传递的前提条件是存在温差,传递的是热量而不是温度,实质上是内能的
7、转移2、热力学第肯定律1内容:一般情形下,假如物体跟外界同时发生做功和热传递的过程,外界对物体做的功 W 与物体从外界吸取的热量 Q 之和等于物体的内能的增加量 U 2数学表达式为: UW+Q 3 符号法就:做功 W 热量 Q 内能的转变 U 取正值“+”外界对系统做功 系统从外界吸取热量 系统的内能增加取负值“ ”系统对外界做功 系统向外界放出热量 系统的内能削减4绝热过程 Q0,关键词“ 绝热材料” 或“ 变化快速”5对抱负气体: U 取决于温度变化,温度上升 U0 ,温度降低 U0 W 取决于体积变化,v 增大时,气体对外做功,W0 ;特例:假如是气体向真空扩散,W 0 3、能量守恒定律
8、:(1)能量既不会凭空产生,也不会凭空消逝,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变;这就是能量守恒定律;(2)第一类永动机:不消耗任何能量,却可以源源不断地对外做功的机器;(违反能量守恒定律)4、热力学其次定律( 1)热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不行逆过程;( 2)说明:“ 自发地” 过程就是在不受外来干扰的条件下进行的自然过程;热量可以自发地从高温物体传向低温物体,热量却不能自发地从低温物体传向高温物体;热量可以从低温物体传向高温物体,必需有“ 外
9、界的影响或帮忙”( 3)热力学其次定律的两种表述,就是要由外界对其做功才能完成;克劳修斯表述:不行能使热量从低温物体传向高温物体而不引起其他变化;开尔文表述:不行能从单一热源吸取热量,使之完全变为有用功而不引起其他变化;名师归纳总结 - - - - - - -( 4)热机热机是把内能转化为机械能的装置;其原理是热机从高温热源吸取热量Q1,推动活塞做功W,然后向低温热源(冷凝器)释放热量Q2;(工作条件:需要两个热源)由能量守恒定律可得:Q1=W+Q 2 第 2 页,共 4 页精选学习资料 - - - - - - - - - 学问点大全我们把热机做的功和它从热源吸取的热量的比值叫做热机效率,用
10、表示,即 = W / Q 1 热机效率不行能达到 100% ( 5)其次类永动机设想:只从单一热源吸取热量,使之完全变为有用的功而不引起其他变化的热机;其次类永动机不行能制成,不违反热力学第肯定律或能量守恒定律,违反热力学其次定律;缘由:尽管机械能可以全部转化为内能,但内能却不能全部转化成机械能而不引起其他变化;机械能和内能的转化过程具有方向性;( 6)推广:与热现象有关的宏观过程都是不行逆的;例如;扩散、气体向真空的膨胀、能量耗散;( 7)熵和熵增加原理 热力学其次定律微观意义:一切自然过程总是沿着分子热运动无序程度增大的方向进行;熵:衡量系统无序程度的物理量,系统越纷乱,无序程度越高,熵值
11、越大;熵增加原理:在孤立系统中,一切不行逆过程必定朝着熵增加的方向进行;热力学其次定律也叫做熵增加原理;( 8)能量退降:在熵增加的同时,一切不行逆过程总是使能量逐步丢失做功的本事,从可利用状态变成不行利 用状态,能量的品质退化了;(另一种说明:在能量转化过程中,总相伴着内能的产生,分子无序程度增加,同 时内能耗散到四周环境中,无法重新收集起来加晶体非晶体,由于以利用)单晶体多晶体外形规就不规章不规章四、固体和液体熔点确定不确定1、晶体和非晶体物理性质各向异性各向同性晶体内部的微粒排列有规章,具有空间上的周期性,因此不同方向上相等距离内微粒数不同,使得物理性质不同(各向异性)多晶体是由很多杂乱
12、无章地排列着的小晶体(单晶体)集合而成,因此不显示各向异性,外形也不规章;晶体达到熔点后由固态向液态转化,分子间距离要加大;此时晶体要从外界吸取热量来破坏晶体的点阵结构,所以吸热只是为了克服分子间的引力做功,只增加了分子的势能;分子平均动能不变,温度不变;2、液晶:介于固体和液体之间的特别物态 物理性质具有晶体的光学各向异性在某个方向上看其分子排列比较整齐 具有液体的流淌性从另一方向看,分子的排列是杂乱无章的3、液体的表面张力现象和毛细现象()表面张力 表面层(与气体接触的液体薄层)分子比较稀疏,rr 0,分子力表现为引力,在这个力作用下,液体表面有收缩到最小的趋势,这个力就是表面张力;表面张
13、力方向跟液面相切,跟这部分液面的分界线 垂直()浸润和不浸润现象:浸润附着层的液体分子比液体内部分子力表现附着层趋势毛细现象密排斥力扩张上升不浸润稀疏吸引力收缩下降()毛细现象:对于肯定液体和肯定材质的管壁,管的内径越细,毛细现象越明显;管的内径越细,液体越高 土壤锄松,破坏毛细管,储存地下水分;压紧土壤,毛细管变细,将水引上 来名师归纳总结 - - - - - - -第 3 页,共 4 页精选学习资料 - - - - - - - - - 学问点大全五、气体试验定律 抱负气体( 1)探究肯定质量抱负气体压强 p、体积 V、温度 T 之间关系,采纳的是掌握变量法( 2)三种变化:等温变化,玻意耳
14、定律:PV C等容变化,查理定律:P / T C 等压变化,盖吕萨克定律:V/ T C p p V V1 p1T1 T 2 V 2 p2O V O T O T 等温变化 等容变化 等压变化T 1 T2 V 1V2 p1 p2提示:等温变化中的图线为双曲线的一支,等容(压)变化中的图线均为过原点的直线(之所以原点邻近为虚线,表示温度太低了,规律不再满意)图中双线表示同一气体不同状态下的图线,虚线表示判定状态关系的两种方法对等容(压)变化,假如横轴物理量是摄氏温度t,就交点坐标为273.15 ( 3)抱负气体状态方程抱负气体,由于不考虑分子间相互作用力,抱负气体的内能仅由温度和分子总数打算,与气体
15、的体积无关;对肯定质量的抱负气体,有 pV 1 p V 2(或 pv 恒定)p V n R T(n为摩尔数)T 1 T 2 T( 4)气体压强微观说明:大量气体分子对器壁频繁地碰撞产生的;压强大小与气体分子单位时间内对器壁单位面积的碰撞次数有关;打算因素:气体分子的平均动能,从宏观上看由气体的温度打算单位体积内的分子数 分子密度 ,从宏观上看由气体的体积打算六、饱和汽和饱和汽压1、饱和汽与饱和汽压:在单位时间内回到液体中的分子数等于从液面飞出去的分子数,这时汽的密度不再增大,液体也不再削减,液体和汽之间达到了平稳状态,这种平稳叫做动态平稳;我们把跟液体处于动态平稳的汽叫做饱和汽,把没有达到饱和状态的汽叫做未饱和汽;在肯定温度下,饱和汽的压强肯定,叫做饱和汽压;未饱和汽的压强小于饱和汽压;饱和汽压影响因素:与温度有关,温度上升,饱和气压增大 饱和汽压与饱和汽的体积无关3)空气的湿度(1)空气的肯定湿度:用空气中所含水蒸气的压强来表示的湿度叫做空气的肯定湿度;水蒸气的实际汽压(2)空气的相对湿度:相对湿度同温度下水的饱和汽压相对湿度更能够描述空气的潮湿程度,影响蒸发快慢以及影响人们对干爽与潮湿感受;(3)干湿泡湿度计:两温度计的示数差别越大,空气的相对湿度越小;名师归纳总结 - - - - - - -第 4 页,共 4 页